Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

Viren mit eingebautem Gen-Schalter

Nr. 41 | 20.08.2012 | von Koh

Wissenschaftler aus dem Deutschen Krebsforschungszentrum entwickelten so genannte „RNA-Schalter“, mit denen sie in Viren Gene gezielt an- oder abschalten können. Damit sollen in Zukunft Gentherapien oder Virustherapien von Krebs besser reguliert werden.

Struktur der selbstschneidenden Komponente des RNS-Schalters
© Bild Frederic Dardel, Wikimedia Commons

Zahlreiche Viren stehen heute im Dienst der Wissenschaft. Sie sollen als Gentaxis therapeutische Gene in Körperzellen einschleusen oder gezielt als Virustherapie Krebszellen infizieren und zerstören. Für solche Einsätze werden die Viren oft mit zusätzlichen Genen ausgestattet, etwa für Immun-Botenstoffe oder für Proteine, die den programmierten Zelltod auslösen. Diese Genprodukte könnten dem Körper jedoch schaden, würden sie zum falschen Zeitpunkt oder in zu großer Menge freigesetzt. „Ideal wäre es, wenn wir die eingeschleusten Gene zu einem bestimmten Zeitpunkt gezielt an- oder abschalten könnten“, sagt Dr. Dirk Nettelbeck, Virologe aus dem Deutschen Krebsforschungszentrum.
Patrick Ketzer, Mitarbeiter in Nettelbecks Arbeitsgruppe, experimentierte zu diesem Zweck gemeinsam mit Kollegen von der Universität Konstanz mit so genannten RNA-Schaltern. Um einen solchen Schalter zu konstruieren, fügen die Forscher in direkter Nachbarschaft des eingeschleusten Gens synthetische DNA-Abschnitte in das Viruserbgut ein. Dieses Konstrukt wird in der infizierten Zelle gemeinsam mit dem eingeschleusten Gen zu einem einzigen Boten-RNA-Molekül (mRNA) abgelesen. Mit einem Wirkstoff, den die Wissenschaftler zu den virusinfizierten Zellen geben, wird der Schalter betätigt. Die Substanz dockt passgenau an das RNA-Molekül an und veranlasst es, sich selbst zu zerschneiden. So kann das potentiell gefährliche Protein nicht hergestellt werden. Diesen Regulationsmechanismus haben sich die Forscher von Bakterien abgeschaut, die die Produktion zahlreicher Proteine über RNA-Schalter steuern.

Die DKFZ-Virologen konstruierten zunächst einen RNA-Schalter, der durch den Wirkstoff permanent in der „aus“-Position gehalten wird. Erst wenn kein Wirkstoff mehr zugegeben wird, startet die Produktion des fremden Proteins. „Das war ein erster Beweis, dass RNA-Schalter in Viren überhaupt funktionieren. Genauso gut ist es aber umgekehrt möglich, Schalter zu konstruieren, die erst bei Wirkstoffzugabe die Proteinproduktion ermöglichen“, erklärt Dirk Nettelbeck.

In Zellen lassen sich Gene bereits seit vielen Jahren gezielt an- und abschalten. Wissenschaftler veränderten dazu bestimmte als „Promoter“ bezeichnete natürliche Schalterregionen im zellulären Erbgut. Das bewirkt, dass die Zugabe des Antibiotikums Tetrazyklin die mRNA-Produktion an- oder ausschaltet.

„Diese Art von Schaltern ist für eine Anwendung in Viren jedoch zu groß und komplex oder funktioniert dort nicht“, erklärt Dirk Nettelbeck. „Die RNA-Schalter dagegen sind gerade mal 100 Basenpaare lang.“ Mit den RNA-Schaltern konnten die Forscher um Nettelbeck die Produktion des therapeutischen Gens um das zehnfache steigern. „Da ist aber noch viel Luft nach oben“, erklärt Nettelbeck. „Die Konstruktion von RNA-Schaltern ist extrem variabel. Ist die Technik einmal ausgereift, werden wir Viren für zahlreiche therapeutische Anwendungen besser ausrüsten und kontrollieren können.“ Nettelbeck und sein Team sind davon überzeugt, dass die praktischen RNA-Schalter sich auch für vielfältige weitere Anwendungen in Forschung und Medizin durchsetzen werden.

Patrick Ketzer, Simon F. Haas, Sarah Engelhardt, Jörg S. Hartig und Dirk M. Nettelbeck: Synthetic Riboswitches for External Regulation of Genes Transferred by Replication-Deficient and Oncolytic Adenoviruses. Nucleic Acids Research 2012; doi:10.1093/nar/gks734.

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Beim Krebsinformationsdienst (KID) des DKFZ erhalten Betroffene, Interessierte und Fachkreise individuelle Antworten auf alle Fragen zum Thema Krebs.

Um vielversprechende Ansätze aus der Krebsforschung in die Klinik zu übertragen und so die Chancen von Patientinnen und Patienten zu verbessern, betreibt das DKFZ gemeinsam mit exzellenten Universitätskliniken und Forschungseinrichtungen in ganz Deutschland Translationszentren:

  • Nationales Centrum für Tumorerkrankungen (NCT, 6 Standorte)
  • Deutsches Konsortium für Translationale Krebsforschung (DKTK, 8 Standorte)
  • Hopp-Kindertumorzentrum (KiTZ) Heidelberg
  • Helmholtz-Institut für translationale Onkologie (HI-TRON) Mainz – ein Helmholtz-Institut des DKFZ
  • DKFZ-Hector Krebsinstitut an der Universitätsmedizin Mannheim
  • Nationales Krebspräventionszentrum (gemeinsam mit der Deutschen Krebshilfe)
Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Archiv Pressemitteilungen

Durchsuchen Sie unser Pressemitteilungsarchiv nach einem bestimmten Thema oder Jahr für Jahr.

RSS-Feed auf www.dkfz.de

Sie können unseren RSS-Feed ganz einfach abonnieren - unkompliziert und kostenlos.

RSS-Feed
nach oben
powered by webEdition CMS