Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Translation Research for Ion Beam Therapy (E0408)

Group Leader: Dr. José Vedelago

more

Secondary neutrons are generated during proton and light ion beam and are of particular relevance for pediatric and pregnant patients
© adapted from: Vedelago et al 2024, CC BY 4.0

Our research group mainly focuses on assessing the secondary radiation during proton and light ion beam therapy for cancer treatment. This is particularly relevant for pediatric and pregnant patients since the associated risks of secondary cancer are more relevant compared to other patients (Vedelago et al 2024). Our primary research partner is the Heidelberg Ion Beam Therapy Center (HIT) at the Heidelberg University Hospital (UKHD), and our main funding institutions are the German Research Foundation (DFG) as well as the Wilhelm Sander Stiftung.

The research activities we work on span from Monte Carlo simulations for characterizing secondary neutron production during ion beam therapy (Vedelago et al 2022a; Geser et al 2024) to the advancement of neutron dosimetry techniques by using Fluorescent Nuclear Track Detectors (FNTDs), with a focus on high-energy neutrons (Becker et al 2022; Schmidt et al 2024). Additionally, we have recently reviewed the update of the International Code of Practice (TRS-398) of the International Atomic Energy Agency (IAEA) for reference dosimetry (Vedelago et al 2022b).

We also have many projects in collaboration with other groups from our department. For instance, the dosimetry for carbon ion radiotherapy in the advanced anthropomorphic phantoms developed by the Medical Engineering Group E0405 (Stengl et al 2023), and we have a joint project for gel dosimetry of carbon ions with the Applied Medical Radiation Physics Group E0402 (Bayer et al 2024). As new projects, we are starting a pilot study about using Machine Learning for neutron dosimetry with FNTDs with the Computational Patient Models Group E0401, and we intend to integrate out-of-field dose models into MatRad in collaboration with the Radiotherapy Optimization Group E0404. Furthermore, in collaboration with the Division of Biomedical Physics in Radiation Oncology, we performed the dosimetry of carbon ion mini-beams (Stengl et al 2024).

Collaborations

Our research extends globally through numerous collaborations at national and international levels, enabling advancements in secondary radiation dosimetry during proton and light ion beam therapy. Our collaboration partners are:

  • Luis Peralta and Joao Gentil
    Laboratório de Instrumentação e Física Experimental de Particulas (LIP), Portugal. https://www.lip.pt/?lang=en&

Selected publications

  • Bayer, V., Vedelago, J., Dorsch, S., Beyer, C., Brons, S., Johnen, W., Biegger, P., Weber, U., Runz, A., Karger, C. P. (2024). Carbon ion mono-energetic and spread-out Bragg peak measurements using nanocomposite Fricke gel dosimeters with LET-independent response. Radiation Measurements, 176, 107175.
    https://doi.org/10.1016/j.radmeas.2024.107175
  • Becker, A., Jäkel, O., Vedelago, J. (2022). Intensity threshold variation method in the post-irradiation analysis of Fluorescent Nuclear Track Detectors for neutron dosimetry. Radiation Physics and Chemistry, 200, 110257. 
    https://doi.org/10.1016/j.radphyschem.2022.110257
  • Geser, F., Stabilini, A., Christensen, J. B., Muñoz, I. D., Yukihara, E. G., Jäkel, O., Vedelago, J. (2024). A Monte Carlo study on the secondary neutron generation by oxygen ion beams for radiotherapy and its comparison to lighter ions. Physics in Medicine & Biology, 69, 015027.
    https://doi.org/10.1088/1361-6560/ad0f45
  • Schmidt, S., Stabilini, A., Thai, L.-Y. J., Yukihara, E. G., Jäkel, O., Vedelago, J. (2024). Converter thickness optimisation using Monte Carlo simulations of Fluorescent Nuclear Track Detectors for neutron dosimetry. Radiation Measurements, 173, 107097.
    https://doi.org/10.1016/j.radmeas.2024.107097
  • Stengl, C., Arbes, E., Thai, L.-Y. J., Echner, G, Vedelago, J., Jansen, J., Jäkel, O., Seco, J. (2023). Development and characterization of a versatile mini-beam collimator for pre-clinical photon beam irradiation. Medical Physics, 50(8): 5222-5237.
    https://doi.org/10.1088/1361-6560/ad0902
  • Stengl, C., Muñoz, I. D., Arbes, E., Rauth, E., Christensen, J. B., Vedelago, J., Runz, A., Jäkel, O., Seco, J. (2024). Dosimetric study for breathing-induced motion effects in an abdominal pancreas phantom for carbon ion mini-beam radiotherapy. Medical Physics.
    https://doi.org/10.1002/mp.17077
  • Vedelago, J., Geser, F., Muñoz, I. D., Stabilini, A., Yukihara, E. G., Jäkel, O. (2022a). Assessment of secondary neutrons in particle therapy by Monte Carlo simulations. Physics in Medicine & Biology, 67, 015008.
    https://doi.org/10.1088/1361-6560/ac431b
  • Vedelago, J., Karger, C. P., Jäkel, O. (2022). A review on reference dosimetry in radiation therapy with proton and light ion beams: status and impact of new developments. Radiation Measurements, 157, 106844.
    https://doi.org/10.1016/j.radmeas.2022.106844
  • Vedelago, J., Schmidt, S., Stengl, C., Karger, C. P., & Jäkel, O. (2024). Secondary neutrons in proton and light ion beam therapy: a review of current status, needs and potential solutions. Radiation Measurements, 176, 107214.
    https://doi.org/10.1016/j.radmeas.2024.107214 

 

For a full list of articles, theses etc. from the division, see here.

Contact

Dr. José Vedelago

phone: +49 6221 42-2437

Contact form

The list af all current group members is available here.

to top
powered by webEdition CMS