Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von Videoplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name Youtube
Zweck Externe Medien

Computational Cancer Genomics

Dr. Marc Zapatka

© dkfz.de

Dr. Marc Zapatka
Team Leader
E-Mail: m.zapatka@dkfz.de
Tel.: +49-6221-42-4584
Publications

The main focus of the bioinformatics team is to improve and apply methods to interpret high throughput data especially to understand tumor diseases, their causes and clinical consequences. The bioinformatics team develops and applies methods and algorithms for the analysis of molecular genetics data in the clinical context. Currently the main focus is the understanding of biological processes in the context of clinical applications through the analysis of high throughput sequencing data. In addition, we use single cell technologies to disentangle tumor compositions and understand the tumor microenvironment. Furthermore, we are interested in bacterial and viral contributions to cancer analyzing the microbiome components of tumor samples to make use of the identified microbiota for tumor characterization and patient stratification.
Our current work in the context of several projects focuses on the following aspects:

  • Improve and apply bioinformatics in the context of molecular tumor boards leading to improved treatment of breast cancer cases. In two clinical projects (CATCH and COGNITION) we perform the bioinformatic analyses and clinical interpretation of the genomic aberrations in breast cancer patients to guide treatment decisions [3]. In collaboration with Prof. Dr. med. Andreas Schneeweiss we work on clinical trials in oncology (Clinical Trials at NCT) and support the decision process in the personalized patient treatment by performing the variant calling and interpretation as well as preparation of the molecular tumor boards.
  • Understanding of tumor development, microenvironment and clonal evolution based on transcriptomic, epigenetic and genomic changes applying bulk and single cell approaches

Example of a patients chronic lymphocytic leukemia tumor showing clonal changes [2].
© dkfz.de

We recently analyzed the clonal evolution in chronic lymphocytic leukemia [2] and now together with Martina Seiffert use single cell methods to understand the tumor microenvironment in CLL. In addition, we analyze the tumor and microenvironment composition applying single cell technologies in brain metastases of breast cancer to understand the establishment of these metastases and their interactions with immune and brain cells.

  • Identifying and characterizing the microbiome component in tumors and tumor patients

Representation of viruses identified in the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes cohort (PCAWG) [1].
© dkfz.de

Recently we analyzed the viral contribution to cancer in a large cohort of cancer samples collected in the CGC/TCGA Pan-Cancer Analysis of Whole Genomes cohort (PCAWG) [1] and could identify relevant genomic lesions linked to viral infections. Currently we are analyzing the viral contribution to cancer in additional cohorts and extend our analysis to the bacterial microbiome especially in the context of chemo- and immune therapy of cancer.

to top
powered by webEdition CMS