Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von Videoplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name Youtube
Zweck Externe Medien

(WS 21/22) Seminar Deep Learning in Medical Image Analysis

Aktuelles

(10.11.2021) The seminar is now taking place on a bi-weekly basis on Mondays, 2 pm - 3.30 pm (s.t.). Interested guest listeners can contact Patrick Godau or Nuong Tran for a link to listen in on the talks.

 

 

Summary

Seminar Logo

© dkfz.de

This seminar will discuss current research in the field of machine learning-based biomedical image processing. In contrast to general image analysis applications the medical domain provides special challenges that we want to focus on within the seminar:

  • Data scarcity: It is rather common that research on complex medical applications faces the problem of only small amounts of available data. This is rarely due to intrinsic rareness of certain medical cases, but rather to difficulties related to the use of highly sensitive personal information, which is well-protected by law. Current research hence deals with approaches that get by with little or no annotated data at all.
  • Robustness: Often decisive between life and death, algorithms in the medical domain necessarily need to ensure robustness as another criterion. Outliers have to be discovered automatically and treated separately during processing. In a more general sense, the processing systems should themselves be aware about the uncertainty in their computations and provide the user with related quantitative information.
  • Generalizability: Medical applications are highly subjected to variability. This includes, for example, different versions and settings of recording devices as well as different modes of handling by physicians. With the intention of broad applicability beyond a specific setting, solid generalizability of the method is required.

 A detailed list of topics will be released around the briefing date.

General information

Briefing:
There will be a briefing session including a presentation and the distribution of the topics as well as an introduction of grading criteria and other requirements for students. This will also provide an opportunity to ask any questions regarding seminar organization.

Schedule:
We will meet regularly every two weeks on Mondays from 14:00 till 15:30, expectedly starting from October 25th until February 14th. There will be no meeting during Christmas holidays (last meeting before: 06.12. & first meeting afterwards: 24.1.). Meetings will be fully virtual. 

Registration:
Either register directly during the briefing or send an e-mail to Nuong Tran (for contact details see below). Registrations are open now.

Audience:
The seminar ideally suits students of Computer Science and Scientific computing. We offer both Bachelor- and Master-level topics (Pro-/Seminar), but the main focus lies on advanced techniques, so prior knowledge on Machine Learning, especially Neural Networks, is a precondition.

Contact

Prof. Dr. Lena Maier-Hein
INF 223 (REZ), F.01.086

 

Patrick Godau
INF 223 (REZ), F.01.088

Thuy Nuong Tran
INF 223 (REZ), F.02.022

to top
powered by webEdition CMS