Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds
Experimental Hepatology, Inflammation and Cancer

Junior Research Group Experimental Hepatology, Inflammation and Cancer

Dr. Dr. Michael Dill

Microscopy image of a hepatocyte organoid
© dkfz.de

Tumors consist of cancer cells and a multitude of other cell types that, through complex interactions, successfully create a tumor microenvironment (TME) that sustains cancer growth and assists in immune evasion. The recent success story of successful treatment by immune check point inhibitors in some cancer types illustrates the importance of anti-tumor immunity. However, the response rate on these therapeutics is very individual and dependent on the composition and activity of the cells in the TME. There is growing evidence that not only classic immunogenic factors, such as the mutational burden of cancer cells, define the anti-tumor immune response but that also oncogenic signaling pathways might play an important role in various ways through mechanisms not thoroughly understood yet.
Our lab investigates how different oncogenic signaling pathways each directly influence the TME and thus anti-tumor immunity. We focus primarily on liver cancer, which is characterized by a substantially genetic and morphologic heterogeneity and therefore particularly interesting to study. We use novel organoid-based preclinical liver cancer models that allow us to rebuild this genetic diversity and to study liver cancer in an immunologically intact setting. With single cell analyses we perform careful characterizations of the molecular cell-cell interactions and utilize functional genomic technologies to further probe their relevance. These models are complemented with organoid systems cultivated from human material.

The aim of our research is the classification of cancer genome – TME phenotype correlation patterns, the identification of immunotherapy resistance mechanisms specific to various oncogenic signaling pathways, and the discovery of therapeutically targetable pathway components of immune evasion, to formulate tumor-specific synergistic therapeutical approaches as a personalized treatment strategy.

Contact

Dr. Dr. Michael Dill
Experimental Hepatology, Inflammation and Cancer (F240)
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 242
69120 Heidelberg
Tel: +49 (0)6221 42-1520

Selected Publications

  • Pepe-Mooney B.J.*, Dill M.T.*, Alemany A., Ordovas-Montanes J., Matsushita Y., Rao A., Sen A., Miyazaki M., Anakk S., Dawson P.A., Ono N., Shalek A.K., van Oudenaarden A., Camargo F.D. (2019). Single-cell analysis of the liver epithelium reveals dynamic heterogeneity and an essential role for YAP in homeostasis and regeneration. Cell Stem Cell., 25(1):23-38.
  • Dill M.T., Makowska Z., Trincucci G., Gruber A.J., Vogt J.E., Filipowicz M., Calabrese D., Krol I., Lau D.T., Terracciano L., van Nimwegen E., Roth V., Heim M.H. (2014). Pegylated IFN-? regulates hepatic gene expression through transient Jak/STAT activation. J Clin Invest., 124(4):1568-81
  • Dill M.T., Tornillo L., Fritzius T., Terracciano L., Semela D., Bettler B., Heim M.H., Tchorz J.S. (2013). Constitutive Notch2 signaling induces hepatic tumors in mice. Hepatology. 57(4):1607-19
  • Dill M.T.*, Rothweiler S.*, Djonov V., Hlushchuk R., Tornillo L., Terracciano L., Radtke F., Heim M.H., Semela D. (2012). Disruption of Notch1 induces vascular remodeling, intussusceptive angiogenesis and angiosarcomas in livers of mice. Gastroenterology., 142(4):967-977
to top
powered by webEdition CMS