Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .


These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Research Articles

C. Wang, M. Sun, C. Shao, L. Schlicker, Y. Zhuo, Y. Harim, T. Peng, W. Tian, N. Stöffler, M. Schneider, D. Helm, Y. Chu, B. Fu, X. Jin, J.-P. Mallm, M. Mall, Y. Wu, A. Schulze, H.-K. Liu. A multidimensional atlas of human glioblastoma-like organoids reveals highly coordinated molecular networks and effective drugs. npj Precision Oncology, (2024). [PubMed][DOI]

 B. Weigel*, J.F. Tegethoff*, S.D. Grieder, B. Lim, B. Nagarajan, Y.C. Liu, J. Truberg, D. Papageorgiou, J.M. Adrian-Segarra, L. Schmidt, J. Kaspar, E. Poisel, E. HeinzelmannM. Saraswat, M. Christ, C. Arnold, I.L. Ibarra, J. Campos, J. Krijgsveld, H. Monyer, J.B. Zaugg, C. Acuna, M. Mall✉. MYT1L haploinsufficiency in human neurons and mice causes autism-associated phenotypes that can be reversed by genetic and pharmacologic intervention. Molecular Psychiatry, (2023). * equal contribution ✉ correspondence. [PubMed][DOI]

Research Highlight: Autism-linked MYT1L mutations prompt 'identity crisis' in budding brain cells. L. Dattaro. Spectrum News, (2023)[DOI]

J.A. Janas, L. Zhang, J.H. Luu, J. Demeter, L. Meng, S.G. Marro, M. Mall, N.A. Mooney, K. Schaukowitch, Y.H. Ng, N. Yang, Y. Huang, G. Neumayer, O. Gozani, J.E. Elias, P.K. Jackson, M. Wernig. Tip60-mediated H2A.Z acetylation promotes neuronal fate specification and bivalent gene activation. Molecular Cell, (2022)[PubMed][DOI]

M. Wöhr, W.M. Fong, J.A. Janas, M. Mall, C. Thome, M. Vangipuram, L. Meng, T.C. Südhof, M. Wernig. Myt1l haploinsufficiency leads to obesity and multifaceted behavioral alterations in mice. Molecular Autism, (2022). [PubMed][DOI]

A. Schönrock*, E. Heinzelmann*, B. Steffl, E. Demirdizen, A. Narayanan, D. Krunic, M. Bähr, J.W. Park, C. Schmidt, K. Özduman, M.N. Pamir, W. Wick, F. Bestvater, D. Weichenhan, C. Plass, J. Taranda, M. Mall, Ş. Turcan. MEOX2 homeobox gene promotes growth of malignant gliomas. Neuro-Oncology, (2022). * equal contribution [PubMed][DOI]

L. Saavedra, K. Wallace, T.F. Freudenrich, M. Mall, W.R. Mundy, J. Davila, T.J. Shafer, M. Wernig, D. Haag. Comparison of acute effects of neurotoxic compounds on network activity in human and rodent neural cultures. Toxicological Sciences, (2021)[PubMed][DOI]

Y. Li, M. Li, B. Weigel, M. Mall, V.P. Werth, M.L. Liu. Nuclear envelope rupture and NET formation is driven by PKCα-mediated lamin B disassembly. EMBO Reports, (2020)[PubMed] [DOI]

Q.Y. Lee*, M. Mall*, S. Chanda, B. Zhou, K.S. Sharma, K. Schaukowitch, J.M. Adrian-Segarra, S.D. Grieder, M.S. Kareta, O. Wapinski, C.E. Ang, R. Li, T.C. Südhof, H.Y. Chang, M. Wernig. Pro-neuronal activity of Myod1 due to promiscuous binding to neuronal genes. Nature Cell Biology, (2020). * equal contribution [PubMed][DOI][F1000 Evaluation]

C. Luo, Q.Y. Lee, O. Wapinski, R. Castanon, J.R. Nery, M. Mall, M.S. Kareta, S.M. Cullen, M. Goodell, H.Y. Chang, M. Wernig, J.R. Ecker. Global DNA methylation remodeling during direct reprogramming of fibroblasts to neurons. eLIFE, (2019)[PubMed] [DOI]

N. Yang, S. Chanda, S. Marro, S., Y.H. Ng, J. Janas, D. Haag, C.E. Ang, Y. Tang, Q. Flores, M. Mall, O. Wapinski, M. Li, H. Ahlenius, J. Rubenstein, H.Y. Chang, A. Alvarez-Buylla, T.C. Südhof, M. Wernig. Generation of pure inhibitory neurons by transcription factor programming. Nature Methods, (2017). [PubMed][DOI]

M. Mall, M.S. Kareta, S. Chanda, H. Ahlenius, N. Perotti, B. Zhou, S.D. Grieder, X. Ge, S. Drake, C.E. Ang, B.M. Walker, T. Vierbuchen, D.R. Fuentes, P. Brennecke, K.R. Nitta, A. Jolma, J. Taipale, L.M. Steinmetz, T.C. Südhof, M. Wernig. Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature, (2017). [PubMed][DOI][F1000 Evaluation]

Research Highlight: Keeping a lid on alternative fates. K. Whalley. Nature Review Neuroscience, (2017). [PubMed][DOI]

W. Chuang, A. Sharma, P. Shukla, G. Li, M. Mall, K. Rajarajan, O. Abilez, R.  Hamaguchi, J. Wu, M. Wernig, S. Wu. Partial Reprogramming of pluripotent stem cell-derived cardiomyocytes into neurons. Scientific Reports, (2017). [PubMed][DOI]

B. Treutlein, Q.Y. Lee, J.G. Camp, M. Mall, W. Koh, S.A.M. Shariati, S. Sim, N.F. Neff, J.M. Skotheim, M. Wernig, S.R. Quake. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature, (2016). [PubMed][DOI][F1000 Evaluation]

News & Views: Cell reprogramming: Brain versus brawn. B. Di Stefano, K. Hochedlinger. Nature, (2016). [PubMed][DOI]
Previews: Advanced technologies lead iNto new reprogramming routes. Y. Zhou, L. Qian. Cell Stem Cell, (2016). [PubMed][DOI]

Durruthy-Durruthy, V. Sebastiano, M. Wossidlo, D. Cepeda, J. Cui, E.J. Grow, J. Davila, M. Mall, W.H. Wong, J. Wysocka, K.F. Au, R.A. Reijo Pera. The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nature Genetics, (2016). [PubMed][DOI]

S. Chanda, C.E. Ang, J. Davila, C. Pak, M. Mall, Q.Y. Lee, H. Ahlenius, S.W. Jung, T.C. Südhof, M. Wernig. Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Reports, (2014). [PubMed][DOI]

M. Mall, T. Walter, M. Gorjanacz, I.F. Davidson, T.B. Nga Ly-Hartig, J. Ellenberg, I.W. Mattaj. Mitotic lamin disassembly is triggered by lipid-mediated signaling. J. Cell Biol., (2012). [PubMed][DOI]

In this Issue: Lipins cause a lamina breakdown. L. Mitch. J. Cell Biol., (2012). [PubMed][DOI]

C. Asencio, I.F. Davidson, R. Santarella-Mellwig, T.B.N. Ly-Hartig, M. Mall, M.R. Wallenfang, I.W. Mattaj, M. Gorjánácz. Coordination of kinase and phosphatase activities by Lem4 enables nuclear envelope reassembly during mitosis. Cell, (2012). [PubMed][DOI][F1000 Evaluation]

Leading Edge: Rebuilding the nuclear envelope, no probLEM. S. Sweat. Cell, (2012). [PubMed][DOI]

K. Unger, L. Zurnadzhy, A. Walch, M. Mall, T. Bogdanova, H. Braselmann, L. Hieber, N. Tronko, P. Hutzler, S. Jeremiah, G. Thomas, H. Zitzelsberger. RET rearrangements in post-Chernobyl papillary thyroid carcinomas with a short latency analysed by interphase FISH. Br. J. Cancer, (2006). [PubMed][DOI]

J. Mansfeld, S. Güttinger, L.A. Hawryluk-Gara, N. Pante, M. Mall, V. Galy, U. Haselmann, P. Mühlhäusser, R.W. Wozniak, I.W. Mattaj, U. Kutay, W. Antonin. The conserved transmembrane nucleoporin NDC1 is required for nuclear pore complex assembly in vertebrate cells. Molecular Cell, (2006). [PubMed][DOI][F1000 Evaluation]

Review Articles

B. Lim*, K. Domsch*, M. Mall✉, I. Lohmann✉. Canalizing cell fate by transcriptional repression. Molecular Systems Biology, (2024). * equal contribution ✉ correspondence. [PubMed][DOI] 

 M. Mall & M. Wernig. The novel tool of cell reprogramming for applications in molecular medicine. Journal of Molecular Medicine, (2017). [PubMed] [DOI]

Book Chapters

J.M. Adrian-Segarra, B. Weigel, M. Mall. Combining cell fate reprogramming and protein engineering to study transcription factor functions. Neural Reprogramming. Methods in Molecular Biology, (2021). [PubMed][DOI]

 J.M. Adrian-Segarra, B. Weigel, M. Mall. Isolation and neuronal reprogramming of mouse embryonic fibroblasts. Neural Reprogramming. Methods in Molecular Biology, (2021). [PubMed][DOI]

M. Mall & M. Wernig. Die neue Technologie der zellulären Reprogrammierung und ihre Anwendung in der Medizin. Stammzellforschung, (2018). [DOI]

Invited Editorials

M. Mall. Sicherheitsschalter in Nervenzellen. Spektrum der Wissenschaft, (2017). [Spektrum]

to top
powered by webEdition CMS