Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

RNA promotes metastasis in lung cancer

No. 08 | 05/02/2013 | by Koh

MALAT1, an RNA molecule, is a marker for progression of lung cancer. Heidelberg researchers have now found out that MALAT1 activates metastasis-promoting genes in cancer cells. In mice, blocking of MALAT1 reduced the number and size of lung cancer metastases.

Picture: Patrick Lynch, Wikimedia Commons

The vast majority – approximately 80 percent – of our DNA does not code for proteins, yet it gets transcribed into RNA. These RNA molecules are called non-coding and fulfill multiple tasks in the cell. Alongside a well-studied group of small RNAs, there is also a class of so-called long non-coding RNAs consisting of more than 200 nucleotides.

Long non-coding RNAs regulate cellular processes such as cell cycle, growth and cell death. Therefore, it came as no surprise that many of these controlling molecules are linked to the progression of cancer. An example is the non-coding RNA MALAT1, which is considered a marker for disease progression in various forms of lung cancer: “The more MALAT1 tumor cells produce, the higher the odds for metastasis and a very unfavorable course of the disease,” says Dr. Sven Diederichs, who discovered the molecule as part of his doctoral thesis. Diederichs now leads a junior research group at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and the Institute of Pathology of Heidelberg University.

In his current project, Diederichs has investigated the actual mechanisms used by MALAT1 to interfere in cellular processes and to promote metastasis. Diederichs and his team recently developed a method for selectively silencing long non-coding RNAs in the cell. To do so, the researchers integrate signaling sequences into the DNA which cause RNA transcripts to be broken down immediately after being formed. Then they analyze resulting changes in cellular biology.

For the first time, Diederichs and his team have been able to achieve almost complete silencing of MALAT1 in lung cancer cell cultures. In the modified cells they found that MALAT1 regulates numerous genes involved in metastasis. As a result, MALAT1-deficient tumor cells have impaired mobility and are less capable of invading surrounding tissue. When implanted in mice, they formed considerably less tumor nodules in the animals’ lungs than cancer cells with intact MALAT1.

Encouraged by this result, the investigators explored whether it is also possible to block MALAT1 and thus prevent metastasis in an intact organism. In collaboration with ISIS Pharmaceuticals, Inc., the Heidelberg scientists developed short nucleic acid strands (antisense oligonucleotides) which are taken up by the cells and specifically block RNA molecules.

In mice injected with human lung cancer cells, MALAT1-specific antisense strands successfully inhibited metastasis formation. The animals’ lungs showed fewer and smaller tumor nodules than those of control animals that had not been given the substance.

“Ten years after we discovered MALAT1 as a predictive marker in lung cancer, we now understand how this non-coding RNA influences metastasis. Moreover, this RNA has turned out to be a potential target for an innovative treatment with antisense RNAs.” Diederichs and his team will further investigate this promising approach aiming to eventually prevent lung cancer from spreading.

Tony Gutschner, Monika Hämmerle, Moritz Eißmann, Jeff Hsu, Youngsoo Kim, Gene Hung, Alexey Revenko, Gayatri Arun, Marion Stentrup, Matthias Groß, Martin Zörnig, A. Robert MacLeod, David L. Spector, Sven Diederichs: The non-coding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Research 2013, DOI: 10.1158/0008-5472.CAN-12-2850

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS