Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Genetic alteration may represent early stage of smoking-induced cardiovascular damage

No. 18 | 01/04/2011 | by Koh

A new study uncovers a previously unrecognized link between tobacco smoking and a gene known to influence the cardiovascular system, possibly identifying an early stage of smoking-associated cardiovascular pathology. The research, published by Cell Press in the April issue of the American Journal of Human Genetics, may serve to guide future research strategies aimed at identifying and counteracting mechanisms of smoking-induced pathology.

© dkfz.de

Tobacco smoking is powerfully addictive and damages the pulmonary and cardiovascular systems, leading to malignancy and premature death. “Although the promotion of smoking cessation clearly remains imperative, a better understanding of the pathophysiological processes linking tobacco smoking and its sequelae could yield opportunities to positively influence disease risk in the large population of continuing smokers,” explains lead study author, Dr. Lutz P. Breitling from the German Cancer Research Center in Heidelberg, Germany.

One possible mechanism that has the potential for mediating the harmful effects of tobacco smoking is DNA methylation. DNA methylation, the attachment of methyl groups to specific sites within a section of DNA, is recognized as an important mechanism for regulating gene function and may play a significant role in diseases with a complex phenotype. Although previous studies have linked nicotine and smoking with altered methylation of several cancer-related genes, comparison of methylation status between heavy smokers who do not have cancer and individuals who have never smoked has not been fully examined.

Dr. Breitling and colleagues used a recently developed genetic screening technique to conduct a genome-wide search for differential methylation correlated with tobacco smoking in 177 current, former and never smokers. The researchers discovered a single section of DNA that exhibited lower methylation in smokers. The site was located within a gene called coagulation factor II receptor-like 3 gene (F2RL3). F2RL3 has been linked with the process of blood clotting and with other cardiovascular functions. Interestingly, the protein coded by this gene has never been mentioned in the smoking literature.

“Our results show that the gene coding for a potential drug target of cardiovascular importance features altered methylation patterns in smokers,” concludes Dr. Breitling. “Intriguing perspectives lie in the possibility that this gene could be causally involved at a very initial stage of smoking-related cardiovascular pathology. A better understanding of its role might open up avenues for preventing the development of associated disease in subjects unable to quit smoking.”


Lutz P Breitling, Rongxi Yang, Bernhard Korn, Barbara Burwinkel und Hermann Brenner:Tobacco smoking-related differential DNA methylation: 27k discovery and replication. American Journal of Human Genetics 2011, DOI: 10.1016/j.ajhg.2011.03.003

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS