Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Promising HPV Test: Fast, Precise and Low-Cost

No. 09 | 06/02/2006 | by (And)

Researchers at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) in the group of Markus Schmitt have developed a detection method for human papilloma¬viruses (HPV) which allows them to identify, in a quick and highly reliable manner, high-risk viruses that cause cervical cancer.

The prime risk factor for cervical cancer is an infection with human papillomaviruses. However, not all HPV types are a health hazard. Scientists distinguish between high-risk types and more harmless family members. There are detection methods available that basically allow one to precisely identify the virus type. However, current methods are not really suitable for large-scale use. In addition, it is not possible to unambiguously detect multiple infections with several different virus types.

An approach developed by virus researchers of the German Cancer Research Center now provides a promising alternative. Markus Schmitt and his colleagues describe their test method in the latest issue of the Journal of Clinical Microbiology*: They first isolate the viral genetic material from a tissue sample, amplify and label it. The enriched DNA material is subsequently mixed with different probes, i.e. small DNA fragments each of which is typical for a specific virus type. If the DNA sequences of the viral DNA under study and the probe are identical, they will bind to each other. The probe thus isolates the unknown DNA from the mixture – a process called hybridization. The probes, in turn, are coupled to tiny plastic beads of different colors, with each type of probe at¬tached to beads of the same color. A reading device measures the amount of hybridized viral DNA on the beads. By their characteristic color, the beads tell us which viral DNA was present in the sample.

Schmitt and his colleagues have developed 22 highly sensitive probes which even make it possible to distinguish HPV types whose genomes vary ever so slightly. In addition, a “universal” probe facilitates detection of yet unknown HPV types. The researchers found out that the genotyping is in no way inferior to previous, more complex investigation methods. It is even more sensitive (a mini¬mum of six different virus types can be detected in one sample) and less error-prone (the results are reproducible at any time). These are excellent prerequisites for using the test as a high-throughput method.

The enriched DNA material from 500 tissue samples can be tested for up to 100 HPV types – all in just one day. Since the test can be performed with relatively little effort and at low costs it is suitable for use in large-scale population studies to investigate distribution, variety and infection behavior of the cancer causing viruses. Moreover, the detection method can help to better assess the effectiveness of a vaccination against the virus. Finally, virus typing would be a useful supplement in routine diagnostics. Particularly women with chronic high-risk HPV infection might benefit from a combination of the new HPV test and a Pap smear, which is part of early cancer diagnosis measures covered by the statutory health insurance.

Cervical cancer is the second most frequent cancer among women worldwide. For 2002, an estimated 493,000 new cases were expected and more than 273,000 women died of cervical cancer in the same year (International Agency for Research on Cancer). The Robert Koch Institute esti¬mated in 2000 that slightly over 6,500 women are newly diagnosed with the disease each year in Germany. The tumor usually develops slowly; precancerous changes are diagnosed in about 50% of cases. If detected early, cervical cancer can be treated and cured without difficulty.

*Markus Schmitt et al.: “Bead-Based Multiplex Genotyping of Human Papillomaviruses”, Journal of Clinical Micro¬biology, 2006 Feb; 44(2):504-12

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS