Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

(Bench)mark: Pitfalls in AI Validation

Register here

Abstract

In medicine, the importance of Artificial Intelligence (AI)-based automatic analysis of medical images for applications such as tumor detection, classification and progression modeling is increasing at an enormous pace. There are, however, only a few algorithms that have successfully been translated into clinical practice. In this talk, several pitfalls related to the validation of AI algorithms will be presented as well as recommendations for overcoming them. In particular, I will discuss how we can make sure to select performance metrics that reflect our biomedical needs.

Biosketch Annika Reinke

Annika Reinke joined the division of Intelligent Medical Systems at the German Cancer Research Center (DKFZ) to adapt mathematical concepts to societally relevant topics, like scientific benchmarking and validation. Having published disruptive findings on biomedical image analysis challenges in Nature Communications, she is a founding member of the initiative of Biomedical Image Analysis ChallengeS (BIAS) aiming for bringing biomedical image analysis challenges to the next level of quality. She serves as the secretary of the MICCAI special interest group on biomedical challenges and as an active member and taskforce lead of the MONAI working group on evaluation, reproducibility and benchmarking.

to top
powered by webEdition CMS