Nr. 63

Kernspintomographie ohne teure Magnete

In vitro MRT-Aufnahme mit der neu entwickelten Technik der kontinuierlichen Hyperpolarisierung.
In vitro MRT-Aufnahme mit der neu entwickelten Technik der kontinuierlichen Hyperpolarisierung.

Gemeinsame Pressemitteilung des Deutschen Konsortiums für Translationale Krebsforschung und des Universitätsklinikums Freiburg

Kernspin- oder Magnetresonanztomographien sind in der heutigen Medizin aus der Diagnostik und Behandlung nicht mehr wegzudenken. Obwohl hochentwickelt, nutzt die teure Technik bislang nur einen Bruchteil ihrer Möglichkeiten. Dem interdisziplinären und internationalen Forschungsteam des Medizinphysikers Dr. Jan-Bernd Hövener vom Deutschen Konsortium für Translationale Krebsforschung (DKTK) der Medizinphysik am Partnerstandort Freiburg ist es gelungen, eine neue, kostengünstige Methode für die Magnetresonanztomographie (MRT) zu entwickeln: die sogenannte kontinuierliche Hyperpolarisation. Sie ermöglicht hochaufgelöste MRT-Bilder bereits in schwachen Magnetfeldern, die von kleinen Magnetspulen erzeugt werden. Dies könnte der entscheidende Schritt sein, um spezielle Anwendungen der MRT auf lange Sicht selbst für mobile Einsätze und in entlegenen Gebieten zugänglich zu machen. Die Wissenschaftler publizierten ihre Forschungsergebnisse in der renommierten Fachzeitschrift Nature Communications.

Die Magnetresonanztomographie ist ein Schnittbildverfahren, mit dem Weichgewebestrukturen wie Organe gut dargestellt werden können. In einem starken, künstlichen Magnetfeld wird ein Teil der Wasserstoffatome des Körpergewebes parallel ausgerichtet und durch Radiofrequenzwellen in Schwingung versetzt. Dabei werden je nach Struktur und Wassergehalt des Gewebes unterschiedliche Signale ausgesendet, anhand derer ein MRT-Schnittbild berechnet werden kann. Anschließend kehren die Wasserstoffatome wieder in Ihre ungeordnete Ausgangslage zurück. Mit der gängigen Technik lässt sich aufgrund der Eigenschaften von Gewebe und Atomen nur ein kleiner Anteil der Wasserstoffatome – eines von sieben Milliarden – ausrichten und messen. Der Rest ist für das MRT unsichtbar. Klinische MR-Tomographen sind zwar in der Lage, das Magnetfeld um das 100.000-fache zu verstärken und die Ausrichtung der Wasserstoffatome so künstlich zu erhöhen, um Aufnahmen zu ermöglichen. Jedoch machen auch diese sehr teuren Spezialmagneten nur wenige Millionstel aller Atome sichtbar: Mehr als 99,999 % aller Wasserstoffatome bleiben im MRT weiterhin unsichtbar.

Hövener und seine Kollegen aus der Radiologischen Klinik des Universitätsklinikums Freiburg wählten daher einen anderen Ansatz, um das MRT-Signal zu erhöhen: Die Hyperpolarisation bewirkt, dass sich ein weit größerer Anteil der Wasserstoffatome magnetisch ausrichtet. Bisherige Versuche in dieser Richtung waren stets mit dem Problem behaftet, dass sich jedes Atom nur einmal polarisieren ließ. Die MRT-Aufnahme selbst zerstört diese Ausrichtung und verhindert damit Mehrfachaufnahmen. Das Forscherteam aus Freiburg und vom Centre for Hyperpolarisation in York, Großbritannien, setzte daher auf Parawasserstoff: Eine Form des normalen Wasserstoffgases, bei dem sich die Atomkerne in einem besonderen Quantenzustand befinden, und das mittels einer chemischen Austauschreaktion andere Moleküle magnetisch ausrichten kann – im richtigen Magnetfeld immer wieder. Dieser dauerhafte Polarisierungseffekt, beruhend auf Vorarbeiten aus York und Freiburg, steht beliebig lange zur Verfügung, erneuert sich nach jeder Messung und macht somit mehrfache MRT-Aufnahmen möglich. Das dadurch erzeugte Signal ist selbst in einem schwachen Magnetfeld, wie es beispielsweise von einer einfachen Batterie erzeugt werden kann, einhundert Mal stärker als in heutigen MRT-Anlagen.

„Es ist aufregend, diesen neuartigen physikalischen Effekt zu erforschen“, sagt Hövener, der in der Abteilung für Medizinphysik der Radiologischen Klinik des Universitätsklinikums Freiburg forscht und Mitglied des Deutschen Konsortiums für Translationale Krebsforschung ist. Zahlreiche Anwendungen in der Chemie und der Molekularbiologie sind denkbar. Bisherige Experimente wurden ausschließlich in vitro durchgeführt. Tests in Zellkulturen und Tiermodellen sollen folgen. Auf lange Sicht hofft der Freiburger Medizinphysiker, dass die kontinuierliche Hyperpolarisation für die biomedizinische Forschung nutzbar wird: „Wasserstoffgas scheint für Menschen gut verträglich zu sein. Von seinem Einsatz könnte die medizinische Diagnostik entscheidend profitieren, auch wenn der Weg noch weit ist“, so Hövener. Als Fernziel seien kostengünstige MRT-Geräte für Screenings ebenso denkbar wie tragbare MRTs für die Diagnose vor Ort.

Hövener J.-B., Schwaderlapp N., Lickert T., Duckett S.B., Mewis R.E., Highton L.A.R., Kenny S.M., Green G.G.R., Leibfritz D., Korvink J.G., Hennig J., von Elverfeldt D. A hyperpolarized equilibrium for magnetic resonance. Nature Communications, 2013.doi: 10.1038/ncomms3946

Über das DKFZ

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Beim Krebsinformationsdienst (KID) des DKFZ erhalten Betroffene, Interessierte und Fachkreise individuelle Antworten auf alle Fragen zum Thema Krebs.

Um vielversprechende Ansätze aus der Krebsforschung in die Klinik zu übertragen und so die Chancen von Patientinnen und Patienten zu verbessern, betreibt das DKFZ gemeinsam mit exzellenten Universitätskliniken und Forschungseinrichtungen in ganz Deutschland Translationszentren:

  • Nationales Centrum für Tumorerkrankungen (NCT, 6 Standorte)
  • Deutsches Konsortium für Translationale Krebsforschung (DKTK, 8 Standorte)
  • Hopp-Kindertumorzentrum (KiTZ) Heidelberg
  • Helmholtz-Institut für translationale Onkologie (HI-TRON) Mainz – ein Helmholtz-Institut des DKFZ
  • DKFZ-Hector Krebsinstitut an der Universitätsmedizin Mannheim
  • Nationales Krebspräventionszentrum (gemeinsam mit der Deutschen Krebshilfe)

Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Formular

Formulardaten werden geladen ...