Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .


These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Dr. Manuel Wiesenfarth

Dr. Manuel Wiesenfarth

Dr. Manuel Wiesenfarth




+49 6221 42 2262


+49 6221 42 2397


TP 4



Area of Work

- Bayesian methods in clinical trials
- Validation of clinical prediction models / in machine learning
- Adaptive clinical trials for precision oncology
- Regularization and smoothing


Selected publications

Wiesenfarth M, Reinke A, Landman BA, Eisenmann M, Saiz LA, Cardoso MJ, Maier-Hein L, Kopp-Schneider A. (2021) Methods and open-source toolkit for analyzing and visualizing challenge results. Science Reports 11(1):2369. doi: 10.1038/s41598-021-82017-6.
Accompanying R package challengeR available on GitHub:

Wiesenfarth M, Calderazzo S. (2020) Quantification of prior impact in terms of effective current sample size. Biometrics, 76(1), 326-336. doi: 10.1111/biom.13124

Calderazzo S, Wiesenfarth M, Kopp-Schneider A. (2020) A decision-theoretic approach to Bayesian clinical trial design and evaluation of robustness to prior-data conflict. Biostatistics, doi: 10.1093/biostatistics/kxaa027

Kopp-Schneider A, Calderazzo S, Wiesenfarth M. (2020) Power gains by using external information in clinical trials are typically not possible when requiring strict type I error control. Biometrical Journal 62(2):361-374. doi: 10.1002/bimj.201800395

Kopp-Schneider A, Wiesenfarth M, Witt R, Edelmann D, Witt O, Abel U. (2019) Monitoring futility and efficacy in phase II trials with Bayesian posterior distributions-A calibration approach. Biometrical Journal 61: 488-502. doi: 10.1002/bimj.201700209

Bonekamp D, Kohl S, Wiesenfarth M, ..., Schlemmer H, Maier-Hein K. (2018). Radiomic machine learning for characterization of prostate lesions with MRI: comparison to ADC values. Radiology, 289(1), 128-137. doi: 10.1148/radiol.2018173064

Kesch C, Radtke JP, Wintsche A, Wiesenfarth M, ..., Duensing S. (2018) Correlation between genomic index lesions and mpMRI and Ga-PSMA-PET/CT imaging features in primary prostate cancer. Scientific reports 12;8(1):16708. doi: 10.1038/s41598-018-35058-3.

Lipka D.B, Witte T, Toth R, Yang J, Wiesenfarth M, ... & Plass C (2017). RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nature communications, 8(1), 2126. doi: 10.1038/s41467-017-02177-w

Frölich M, Huber M, Wiesenfarth M (2017). The finite sample performance of semi-and non-parametric estimators for treatment effects and policy evaluation. Computational Statistics & Data Analysis, 115, 91-102. doi: 10.1016/j.csda.2017.05.007

Klasen S, Krivobokova T, Greb F, Lahoti, R, Pasaribu SH, Wiesenfarth M. (2016). International income poverty measurement: which way now?. The Journal of Economic Inequality, 14(2), 199-225.

Wiesenfarth M, Hisgen M, Kneib T, Cadarso-Suarez C (2014). Bayesian Nonparametric Instrumental Variables Regression based on Penalized Splines and Dirichlet Process Mixtures. Journal of Business & Economic Statistics, 32(3), 468-482.
Accompanying R package bayesIV Package source / Windows binaries

Wiesenfarth M, Krivobokova T, Klasen S, Sperlich S (2012). Direct Simultaneous Inference in Additive Models and its Application to Model Undernutrition. Journal of the American Statistical Association, 107(500):1286-1296.
Accompanying R package AdaptFitOS Available on CRAN:

Wiesenfarth M, Kneib T (2010). Bayesian Geoadditive Sample Selection Models. Journal of the Royal Statistical Society: Series C, 59(3): 381-404.
Accompanying R package bayesIV  Package source / Windows binaries





to top
powered by webEdition CMS