Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

108th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA) Chicago

November 27 - December 1, 2022

Deep learning-based iterative reconstruction for field of view extension in dual-source dual-energy CT
J. Maier, J. Erath, S. Sawall, K. Stierstorfer, E. Fournié, and M. Kachelrieß

Explainable AI for CT: Analyzing CT image denoising networks by reconstructing their invariances
E. Eulig, B. Ommer, and M. Kachelrieß

Deep scatter estimation (DSE) for high scatter frequencies caused by coarse anti scatter grids in clinical CT
J. Erath, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrieß

Dedicated imaging of the breast with a clinical photon-counting CT system: A phantom study
S. Sawall, S. Lehr, E. baader, L. Rotkopf, J. Maier, H.-P. Schlemmer, S. Schönberg, I. Sechopoulos, and M. Kachelrieß

Potential CT radiation dose reduction to the female breast by a novel risk-minimizing tube current modulation
L. Klein, E. Baader, A. Byl, C. Liu, S. Sawall, A. Maier, M. M. Lell, J. Maier, and M. Kachelrieß

Deep learning in CT artifact correction
M. Kachelrieß

to top
powered by webEdition CMS