Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .


These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

A meager supply from the bone marrow: Macrophages in tissues (mostly) renew themselves

No. 02 | 13/01/2015 | by Sel

Most cells in the blood arise from stem cells in the bone marrow. Exceptions are macrophages, a type of phagocytic cell that forms part of the immune system. In a collaboration between the German Cancer Research Center in Heidelberg and King’s College in London, scientists have discovered that most macrophages originate in the yolk sac, a type of embryonic tissue. Progenitors of macrophages migrate from the yolk sac to various tissues where they settle and renew themselves. Additional macrophages from the bone marrow are only supplied in the case of inflammations or other pathogenic processes. These findings shed new light on these immune cells, which were discovered 150 years ago, but whose origin and development have been poorly understood. The findings were just published in the journal “Nature”.


Macrophages (Greek: “big eaters”) are cells of the immune system. In tissues, they recognize both foreign invaders (pathogens) and aged cells of the body, which they engulf and digest. Macrophages are specific to different types of tissue. For example, they are called Kupffer cells in the liver, osteoclasts in the bone, alveolar macrophages in the lungs, and microglia in the brain.

These cells are classified as blood cells because they can be cultivated in the lab from specific white blood cells called monocytes. “Therefore, it has been regarded as established that macrophages also arise from stem cells in the bone marrow,” says Hans-Reimer Rodewald from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ). “Our new results now challenge this textbook view.”

The first blood cells are generated in the yolk sac, a special tissue that provides nutrients to the fetus during early embryonic development and later disappears. When that happens the fetal liver first takes over the vital task of providing a continuous supply of new red and white blood cells; later the bone marrow steps in. “We wanted to know whether this also holds true for macrophages that reside in tissue,” says Rodewald, “because evidence suggested that these special cells might also have other origins.”

The scientists in Rodewald’s team labeled progenitor cells with a fluorescent protein in order to identify the point in development when macrophages form and the tissue in which this happens. To dye the cells, they used a special gene switch that had been developed by Katrin Busch, a PhD student in Rodewald’s lab. “We could see that the tissue-resident macrophages form very early in the embryonic phase from progenitors in the yolk sac,“ says Kay Klapproth, one of the two first authors of the study. “This runs counter to what we have believed until now. It shows that macrophages are not supplied from the bone marrow, but renew themselves independently in the tissue where they reside.”

“This holds true for macrophages in normal healthy tissue,” says Rodewald. “In cases where there is a higher demand for the cells, due to inflammations or a depletion of macrophages, monocytes from the bone marrow appear to be able to provide more tissue macrophages.” It is still unclear whether these substitute macrophages carry out the same tasks as the “conventional” macrophages.

The scientists now plan to determine how the original macrophages from the yolk sac are distinguished from “emergency” macrophages called up from the bone marrow. “In certain types of cancer, macrophages might contribute to the spread of tumor cells,” Klapproth says. “In other cases, they are believed to have tumor-inhibiting functions.” At present, it is still unclear whether these contradictory functions might be linked to the different origins of the macrophages. In cancer treatment, it would be desirable to be able to fight “harmful” macrophages and to selectively activate “useful” cells. However, it is not yet possible to distinguish the two cell types from each other. “In the future, it would be exciting if our new findings could be used to distinguish different classes of macrophages based on their origins,” Rodewald says.

Elisa Gomez Perdiguero, Kay Klapproth, Christian Schulz, Katrin Busch, Emanuele Azzoni, Lucile Crozet, Hannah Garner, Celine Trouillet, Marella F. de Bruijn, Frederic Geissmann, Hans-Reimer Rodewald: Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2014, DOI 10.1038/nature13989

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.


Subscribe to our RSS-Feed.

to top
powered by webEdition CMS