Research
- Research Topics
- Cell Biology and Tumor Biology
- Stem Cells and Cancer
- Inflammatory Stress in Stem Cells
- Experimental Hematology
- Molecular Embryology
- Signal Transduction and Growth Control
- Epigenetics
- Redox Regulation
- Vascular Oncology and Metastasis
- Clinical Neurobiology
- Molecular Neurogenetics
- Molecular Neurobiology
- Mechanisms Regulating Gene Expression
- Molecular Biology of Centrosomes and Cilia
- Dermato-Oncology
- Pediatric Leukemia
- Tumour Metabolism and Microenvironment
- Personalized Medical Oncology
- Molecular Hematology - Oncology
- Cancer Progression and Metastasis
- Translational Surgical Oncology
- Neuronal Signaling and Morphogenesis
- Cell Signaling and Metabolism
- Cell Fate Engineering and Disease Modeling
- Cancer Drug Development
- Cell Morphogenesis and Signal Transduction
- Functional and Structural Genomics
- Molecular Genome Analysis
- Molecular Genetics
- Pediatric Neurooncology
- Cancer Genome Research
- Chromatin Networks
- Functional Genome Analysis
- Theoretical Systems Biology
- Neuroblastoma Genomics
- Signaling and Functional Genomics
- Signal Transduction in Cancer and Metabolism
- RNA-Protein Complexes and Cell Proliferation
- Systems Biology of Signal Transduction
- Areas of Interest
- Advancement of clinical proteomics for systems medicine
- Bridging from the single cell to the cell population – Epo-induced cellular responses and erythroleukemia
- Deciphering tumor microenvironment interactions determining lung cancer development
- Mechanisms controlling the compensation of liver injury and towards model-based biomarkers for early detection of liver cancer
- Application of dynamic pathway modelling for personalized medicine
- Group Members
- Publications
- Open Positions
- Funding
- Teaching
- Areas of Interest
- Molecular thoracic Oncology
- Proteomics of Stem Cells and Cancer
- Computational Genomics and System Genetics
- Applied Functional Genomics
- Applied Bioinformatics
- Translational Medical Oncology
- Metabolic crosstalk in cancer
- Pediatric Glioma Research
- Cancer Epigenomics
- Translational Pediatric Sarcoma Research
- Artificial Intelligence in Oncology
- Mechanisms of Genomic Variation and Data Science
- Neuropathology
- Pediatric Oncology
- Neurooncology
- Somatic Evolution and Early Detection
- Translational Control and Metabolism
- Soft-Tissue Sarcoma
- Precision Sarcoma Research
- Brain Mosaicism and Tumorigenesis
- Mechanisms of Genome Control
- Translational Gastrointestinal Oncology and Preclinical Models
- Translational Lymphoma Research
- Mechanisms of Leukemogenesis
- Genome Instability in Tumors
- Developmental Origins of Pediatric Cancer
- Brain Tumor Translational Targets
- Translational Functional Cancer Genomics
- Regulatory Genomics and Cancer Evolution
- SPRINT
- Cancer Risk Factors and Prevention
- Cancer Epidemiology
- Biostatistics
- Clinical Epidemiology and Aging Research
- Health Economics
- Physical Activity, Prevention and Cancer
- Primary Cancer Prevention
- Personalized Early Detection of Prostate Cancer
- Digital prevention, diagnostics and therapy guidance
- Policy and Implementation Research for Cancer Prevention
- Tumorigenesis and molecular cancer prevention
- Genomic Epidemiology
- Cancer Survivorship
- Immunology, Infection and Cancer
- Structural Biology of Infection and Immunity
- Cellular Immunology
- B Cell Immunology
- Immune Diversity
- Immunoproteomics
- Personalized Immunotherapy
- mRNA Cancer Immunotherapies
- Tumor Immunology and Tumor Immunotherapy
- Infections and Cancer Epidemiology
- Pathogenesis of Virus-Associated Tumors
- Immunotherapy and Immunoprevention
- Virus-associated Carcinogenesis
- Chronic Inflammation and Cancer
- Microbiome and Cancer
- Molecular Oncology of Gastrointestinal Tumors
- Applied Tumor Immunity
- Neuroimmunology and Brain Tumor Immunology
- Applied Tumor Biology
- Virotherapy
- Adaptive Immunity and Lymphoma
- Dermal Oncoimmunology
- Immune Regulation in Cancer
- Systems Immunology and Single Cell Biology
- Pediatric Immuno-Oncology
- Epithelium Microbiome lnteractions
- Experimental Hepatology, Inflammation and Cancer
- GMP & T Cell Therapy
- Tumorvirus-specific Vaccination Strategies
- Mammalian Cell Cycle Control Mechanisms
- Molecular Therapy of Virus-Associated Cancers
- DNA Vectors
- Episomal-Persistent DNA in Cancer- and Chronic Diseases
- Immune Monitoring
- News
- Imaging and Radiooncology
- Radiology
- Research
- Computational Radiology Research Group
- Contrast Agents In Radiology Research Group
- Neuro-Oncologic Imaging Research Group
- Radiological Early Response Assessment Of Modern Cancer Therapies
- Imaging In Monoclonal Plasma Cell Disorders
- 7 Tesla MRI - Novel Imaging Biomarkers
- Functional Imaging
- Visualization And Forensic Imaging
- PET/MRI
- Dual- and Multienergy CT
- Radiomics Research Group
- Prostate Research Group
- Bone marrow
- Musculoskeletal Imaging
- Microstructural Imaging Research Group
- Staff
- Patients
- Research
- Medical Physics in Radiology
- X-Ray Imaging and Computed Tomography
- Federated Information Systems
- Translational Molecular Imaging
- Medical Physics in Radiation Oncology
- Biomedical Physics in Radiation Oncology
- Intelligent Medical Systems
- Medical Image Computing
- Radiooncology - Radiobiology
- Smart Technologies for Tumor Therapy
- Team
- Research
- Microrobots and Miniaturize Devices for Minimally-invasive Surgery
- Magnetic localization and sensing for biomedical devices
- Nanorobots for Targeted Delivery in Deep Biological Tissues
- 3D Additive Manufacturing of Soft Materials as In Vitro Tumor Models
- Surgical Simulation on Cyber-physical Organ Models
- News
- Vacancies
- Radiation Oncology
- Molecular Radiooncology
- Nuclear Medicine
- Translational Radiation Oncology
- Translational Radiotheranostics
- Interactive Machine Learning
- Intelligent Systems and Robotics in Urology
- Multiparametric methods for early detection of prostate cancer
- Translational Molecular Imaging in Oncologic Therapy Monitoring
- Radiology
- Cell Biology and Tumor Biology
- Research Groups A-Z
- Junior Research Groups
- Core Facilities
- News
- List of Core Facilities
- Antibodies
- Cellular Tools
- Center for Preclinical Research
- Central Library
- Chemical Biology
- Dieter Morszeck Biorepository
- Electron Microscopy
- Flow Cytometry
- Information Technology ITCF
- Light Microscopy
- Metabolomics
- Microarray
- Microbiological Diagnostics
- Next Generation Sequencing
- Omics IT and Data Management
- Proteomics
- Radiopharmaceuticals and Preclinical Trials
- Single-cell Open Lab
- Small Animal Imaging
- Transgenic Service
- Tumor Models
- OMERO@DKFZ
- List of Technologies
- DKFZ Core Facilities Publication Policy
- Enabling Technology
- Data Science @ DKFZ
- INFORM
- Baden-Württemberg Cancer Registry
- Cooperations & Networks
- National Cooperations
- International Cooperations
- Cooperational Research Program with Israel: DKFZ - MOST in Cancer Research
- Program
- Members of the Program Committee
- Call
- Publication Database
- German-Israeli Cancer Research Schools
- Archive
- Heidelberg - Israel, Science and Culture
- Symposium 40 Years of German-Israeli Cooperation
- 35th Anniversary Symposium
- 34th Meeting of the DKFZ-MOST Program
- 40th Anniversary Publication
- 30th Anniversary Publication
- 20th Anniversary Publication
- Flyer - The Cancer Cooperation Program
- List Publications 1976-2004
- Highlight-Projects
- Cooperational Research Program with Israel: DKFZ - MOST in Cancer Research
- Cooperations with industrial companies
- DKFZ PostDoc Network
- Cross Program Topic RNA@DKFZ
- Cross Program Topic Epigenetics@dkfz
- Cross Program Topic Single Cell Sequencing
- WHO Collaborating Centers
- DKFZ Site Dresden
- Health + Life Science Alliance Heidelberg Mannheim
Dr. Maria Dinkelacker
Personal Website
Research Interest:
My main focus of research is the role of the Immune System in cancer. The tumor microenvironment plays a critical role in attracting immune cells to the cancer. Especially single cell data analysis is a good tool to study this interaction of immune cells and the tumor development. New advances such as immune checkpoint inhibitor treatment can only work in a healthy environment, where the tumor does not escape the immune system, by down regulating for example MHC molecules and the microenvironment does not attract the wrong type of immune cells.
It has been shown that the innate immune system does actually sustain the cancer development, while the adaptive immune system is mostly helping to defend the body against cancer. Immune suppressed patients clearly show an significantly elevated risk to develop cancer, which shows us, that the role of the immune system in cancer is most important.
Intracellular signalling in the immune system is done by chemokine and cytokine signalling events, also by factors, such as cytokines, toll like receptors and the presentation of tumor antigens on self-MHC. The first steps of tumor vaccination with cancer testis antigens (CTAs) have been tested. It has been forgotten however in this case, that the establishment of central-self tolerance via tissue-restricted antigens (TRAs) in order to establish a tolerance of T cells versus the body self, plays a most critical role in the prevention of vaccination against CTAs.
Since I studied "Chromosomal clustering of tissue-restricted antigens" during my PhD I could find several thousands of TRAs in the context of autoimmune diseases. These TRAs have been annotated and put into a database of tissue-restricted antigens (TRA-DB) and can be helpful to find new drug targets both in autoimmune diseases as well as in the context of cancer immunotherapy with potential cancer-testis antigens (CTAs).
Autoimmunity might be a side effect of immunotherapy in cancer and are illnesses which can almost not be treated nor diagnosed at the moment. We have identified several thousand candidate genes, in tissue-specific autoimmune diseases, such as diabetes type-1 (TDM1), multiple sclerosis (MS), graves disease, hashimoto thyroiditis, addison's disease and many more. Currently we are trying to validate these candidate genes and develope diagnostic chips for autoimmune diseases.
Undertanding the immune system is one of the most interesting and demanding questions in science and has been my dream to study ever, since I have been a child. We are using multipe bioinformatical tools and datasets, from microarray data, RNAseq data, nanostring data to single cell data, which we mostly process in the statistical programming language R.
Publications and conference preceedings:
• Chromosomal clustering of tissue-restricted antigens, PhD thesis (2019)
• GCB, 2019, German Conference on Bioinformatics, poster (2019)
• ICSB 2011, 12th International Conference on System Biology, poster (2011)
• ISMB/ECCB, Conference, Vienna, poster (2011)
• SBHD, Systems Biology of Human Disease, Conference, Boston, poster (2011)
• 3rd Annual Meeting of NGFN-Plus and NGFN-Transfer in the Program of Medical Genome Reserach, Poster: "Prediction of MHC II loading of tissue restricted antigens" (2010)
• ECCB10, 9th European Conference on Computational Biology, Ghent, Belgium, Poster: "Expression and chromosomal clustering of tissue-restricted antigens" (2010)
• 1st Cellular Networks Conference, CNC 2010, Heidelberg, Poster: "Prediction MHC II loading of tissue-restricted antigens" (2010)
• Annual Meeting of the Society of Virology, Heidelberg, poster (2008)
• NGFN SMP Bioinformatics, "From Bioinformatics to Medical Systems Biology", Poster and Talk: "Expression and Chromosomal clustering of tissue-restricted antigens" (2007)
• Establishing a database of tissue-restricted antigens, Diploma thesis (2007)
Teaching activity:
WS 2019/20
Programming course with R in Immunological Bioinformatics, Tumor Immunology - Biotechnologists
Seminar in Immunological Bioinformatics and Tumor Immunology - Biotechnologists
Introduction into Latex, writing your thesis in Latex - Biotechnologists
Programming course for biologists in R - Biologists
SS 2020
Autoimmunity, central self-tolerance and tumor immunotherapy (online course) - Biotechnologists
Seminar in Immunological Bioinformatics and Tumor Immunology (online course) - Medical Faculty
Programming course with R in Immunological Bioinformatics, Tumor Immunology (online course) - Medical Faculty
Interdisciplinary cooperations as well as interested students are always welcome.