Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .


These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Computer-aided cell analysis for faster diagnosis of blood diseases

No. 43 | 10/08/2023 | by Koh

Scientists from the German Cancer Research Center (DKFZ) and the Cambridge Stem Cell Institute have developed an AI system that recognizes and characterizes white and red blood cells in microscopic images of blood samples. The algorithm can help physicians diagnose blood disorders and is available as an open source method for research purposes.

© Adobe Stock

Blood disorders are often characterized by altered numbers and aberrant shapes of red and white blood cells. To diagnose the diseases, physicians classically examine blood smears on a slide under a microscope. This type of diagnosis is straightforward, but evaluation by experienced experts is difficult because the changes are sometimes very inconspicuous and affect only a few of the tens of thousands of visible cells.

Due to these difficulties, the differentiation of diseases is not always easy. For example, the visible changes in the blood of patients with myelodysplastic syndrome (MDS), an early form of leukemia, often resemble those of much more harmless forms of anemia. The definitive diagnosis of MDS therefore requires additional more invasive procedures, such as analysis of bone marrow biopsies and molecular genetic testing.

"To support specialists in these difficult diagnoses, we have developed a computer-based system that automatically recognizes and characterizes white and red blood cells from peripheral blood," explains Moritz Gerstung of DKFZ. Gerstung and colleagues first trained the algorithm, called Haemorasis, to recognize the cell morphology of more than half a million white blood cells as well as many millions of red blood cells from more than 300 individuals with different blood disorders (various anemias and forms of MDS).

"The algorithm is able to detect the shape and number of tens of thousands of blood cells in a microscopic image of the blood. This complements human capabilities, which are typically more focused on detail," Gerstung says. Using the trained knowledge, Haemorasis can now suggest diagnoses of blood disorders and even distinguish genetic subtypes of the diseases. In addition, the algorithm also reveals concrete correlations between certain cell morphologies and diseases, which are often difficult to find because of the large number of cells involved.

Haemorasis has already been tested on three independent groups of patients to demonstrate that the system also works in other test centers and blood count scanner systems "We have now demonstrated for the first time that computer-assisted analysis of blood images is possible and can contribute to initial diagnosis," explains Gerstung. Haemorasis is designed to facilitate diagnostics in hematology and can help make a more accurate initial diagnosis of blood disorders. This is important for identifying those patients who require more invasive testing, such as bone marrow punctures or genetic analysis.

"Automated cell analysis with Haemorasis could complement routine diagnosis of blood disorders in the future. So far, the algorithm has only been trained on specific diseases - but we still see great potential in this approach," Gerstung says. He stresses that further studies are needed to identify potential limitations of the method.

Haemorasis is available as an open-source method for research purposes and is straightforward to use.

José Guilherme de Almeida, Emma Gudgin, Martin Besser, William G. Dunn, Jonathan Cooper, Torsten Haferlach, George S. Vassiliou & Moritz Gerstung: Computational analysis of peripheral blood smears detects disease-associated cytomorphologies.

Nature Communications 2023, DOI:

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.


Subscribe to our RSS-Feed.

to top
powered by webEdition CMS