Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

How blood cancer cells renew themselves

Joint press release by UKHD and DKFZ

No. 66b | 23/11/2022

Scientists at Heidelberg University Hospital, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and HI-STEM gGmbH* have discovered a new mechanism for the self-renewal of leukemia stem cells. The study results help to better understand the aggressive course of acute myeloid leukemia.

© Wikimedia Commons

Almost all tissues in our body contain a small number of stem cells that can divide indefinitely and are also capable of forming a large number of different mature cell types. Some cancer cells also acquire this ability and are then called cancer- or leukemia stem cells (LSCs) in case of some blood cancers. The presence and frequency of LSCs make blood cancers particularly aggressive and resistant to therapies. A team of researchers from Heidelberg University Hospital (UKHD), the German Cancer Research Center (DKFZ) and the Stem Cell Institute HI-STEM is investigating the molecular mechanisms that make up these leukemic stem cells in acute myeloid leukemia (AML). AML is a particularly aggressive cancer of the hematopoietic system. About 50 percent of patients suffer from a relapse after therapy, which is very hard to control and caused by surviving leukemia stem cells.

In the scientific journal "Cancer Discovery", the scientists describe a completely new molecular mechanism that turns normal leukemia cells into the particularly dangerous leukemia stem cells.

RNA methylation controls self-renewal mechanism and makes leukemic cells aggressive

The Heidelberg team focused its work on the group of molecules known as ribosomal ribonucleic acids (rRNA). Together with other components, rRNA forms the "protein factories" of cells, the ribosomes. Here, all proteins required for cell function are assembled from their components. Earlier research in Müller-Tidow's team had suggested that certain chemical modifications (methylations) to rRNA may influence cancer development.

In their current study, the researchers first showed that AML stem cells carry highly specific and dynamically regulated methylation patterns on their rRNA molecules. They then transplanted human AML cells, which have been engineered to produce a key protein controlling this methylation process, into mice. This allowed them to functionally study the consequence of differential rRNA methylation in human leukemic cells in an in vivo setting. The data revealed that these methyl marks influence the type of proteins produced by the leukemia stem cells. Moreover, the ability to self-renew - the most important functional feature of aggressive leukemic stem cells - was also stimulated via this mechanism.

"Our work provides completely new insights into the molecular mechanisms that make leukemia stem cells so dangerous and that have been poorly understood since their discovery more than 20 years ago" explains Andreas Trumpp, Head of the Division "Stem Cells and Cancer" at DKFZ and Director of HI-STEM. Carsten Müller-Tidow, Medical Director of the Department of Hematology, Oncology and Rheumatology at the UKHD, reports: "We have known for a long time that methylation of the genetic material is an important control mechanism that regulates the aggressiveness of tumor cells. We have now been able to show for the first time that the methylation of rRNA molecules of cancer cells also has a significant influence on the course of the disease. We hope that, based on our results, we will be able to develop new therapeutic approaches in the future that will also destroy generally highly resistant leukemia stem cells and thus finally defeat leukemia."

Literature
Zhou F, Aroua N, Rohde C, et al. A dynamic rRNA ribomethylome drives stemness in acute myeloid leukemia. Cancer Discov 2022; https://pubmed.ncbi.nlm.nih.gov/36259929/

* The Heidelberg Institute for Stem Cell Research and Experimental Medicine (HI-STEM) gGmbH was founded in 2008 as a public-private partnership by the DKFZ and Dietmar Hopp Foundation.

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 3,000 employees is the largest biomedical research institution in Germany. More than 1,300 scientists at the DKFZ investigate how cancer develops, identify cancer risk factors and search for new strategies to prevent people from developing cancer. They are developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to all questions on cancer.

Jointly with partners from the university hospitals, the DKFZ operates the National Center for Tumor Diseases (NCT) in Heidelberg and Dresden, and the Hopp Children's Cancer Center KiTZ in Heidelberg. In the German Consortium for Translational Cancer Research (DKTK), one of the six German Centers for Health Research, the DKFZ maintains translational centers at seven university partner locations. NCT and DKTK sites combine excellent university medicine with the high-profile research of the DKFZ. They contribute to the endeavor of transferring promising approaches from cancer research to the clinic and thus improving the chances of cancer patients.

The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS