Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

A specific inhibitor allows to study an enigmatic enzyme

No. 56c | 10/10/2022 | by Koh

The enzyme HDAC10 is involved in a variety of cellular processes associated with the development of a number of diseases. However, it is often not known exactly what role HDAC10 plays in the disease process. Scientists from the German Cancer Research Center (DKFZ) have now for the first time synthesized a highly selective inhibitor that can be used to study the function of HDAC10.

The inhibitor DKFZ-748 binds to the enzyme HDAC 10.
© Steimbach / DKFZ

Histone deacetylases (HDAC) are a family of 18 enzymes that largely interfere with the epigenetics of cells and influence which genes are transcribed. HDAC enzymes play a role in the development of many diseases, including numerous cancers. Five compounds targeting HDAC enzymes are already approved as drugs.

Within the large group of HDAC, HDAC10 is considered a particularly enigmatic representative. Unlike the majority of its family members, this enzyme does not act epigenetically but has been linked to important physiological processes such as autophagy, DNA repair, angiogenesis, and cell proliferation. In addition, studies report that it is involved in inflammatory diseases and transplant rejection.

However, in order to study the exact function of HDAC10, only non-specific inhibitors have been available so far, which also block a number of other HDAC family members. The alternative has been to genetically knock out the enzyme. A team led by Aubry Miller of the German Cancer Research Center has now succeeded for the first time in developing a specific HDAC10 inhibitor.

HDAC10 removes acetyl groups from so-called polyamines, a class of biological compounds that perform a variety of tasks in the cell. The enzyme shows a strong preference for certain representatives of this substance class. Based on this specificity, the DKFZ team succeeded in synthesizing a highly specific HDAC10 inhibitor on the basis of an already known drug that does not selectively block HDAC enzymes.

The compound, called DKFZ-748, is hardly toxic to cells and therefore well suited to study the function of HDAC10 as well as that of its substrates, the polyamines. The research team was able to show that treatment of cells with DKFZ-748 completely suppresses the functions of HDAC10.

Using tumor cells (HeLa), the researchers demonstrated in cell culture that inhibition of HDAC10 by DKFZ-748 curbed cancer cell growth when sufficient polyamines were not available. "This is an indication that HDAC10 normally removes acetyl groups from the polyamines we consume in our diet. Removing the acetyl group makes the polyamines usable by tumor cells, which rely on these compounds for growth," said Raphael Steimbach, lead author of the study, explaining a newly discovered function of HDAC10.

"HDAC10 appears to provide cancer cells with alternative sources of polyamines," says study leader Aubry Miller. "HDAC10 inhibition could therefore potentially support the action of polyamine-blocking cancer therapeutics currently being tested in clinical trials."

Raphael R. Steimbach, Corey J. Herbst-Gervasoni, Severin Lechner, Tracy Murray Stewart, Glynis Klinke, Johannes Ridinger, Magalie Géraldy, Gergely Tihanyi, Jackson R. Foley, Ulrike Uhrig, Bernhard Kuster, Gernot Poschet, Robert A. Casero Jr., Guillaume Médard, Ina Oehme, David W. Christianson, Nikolas Gunkel, Aubry K. Miller: Aza-SAHA Derivatives are Selective Histone Deacetylase 10 Chemical Probes That Inhibit Polyamine Deacetylation and Phenocopy HDAC10 Knockout.
Journal of the American Chemical Society 2022, DOI 10.1021/jacs.2c05030

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 3,000 employees is the largest biomedical research institution in Germany. More than 1,300 scientists at the DKFZ investigate how cancer develops, identify cancer risk factors and search for new strategies to prevent people from developing cancer. They are developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to all questions on cancer.

Jointly with partners from the university hospitals, the DKFZ operates the National Center for Tumor Diseases (NCT) in Heidelberg and Dresden, and the Hopp Children's Cancer Center KiTZ in Heidelberg. In the German Consortium for Translational Cancer Research (DKTK), one of the six German Centers for Health Research, the DKFZ maintains translational centers at seven university partner locations. NCT and DKTK sites combine excellent university medicine with the high-profile research of the DKFZ. They contribute to the endeavor of transferring promising approaches from cancer research to the clinic and thus improving the chances of cancer patients.

The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS