Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

How blood stem cells stay intact for a lifetime

No. 28c | 09/05/2022

Stem cells in the bone marrow keep replenishing us with blood cells until the day we die. They do this by dividing into a daughter cell that becomes a blood cell, and a second cell that remains a stem cell. But every time a cell divides, mistakes can occur that change the cell's genome and increase the risk of it becoming a cancer cell. A team of researchers from Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), the German Cancer Research Center (DKFZ), Berlin Institute of Health at Charité, the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC and Harvard Medical School has now discovered an amazing mechanism that allows the body to protect itself from this risk.

A team of researchers from Heidelberg, Berlin and Harvard has now discovered how blood stem cells in the bone marrow protect their genetic material from damage.
© Adobe Stock

Our blood contains many different types of cell that are involved in our immune system, in transporting oxygen, and in healing wounds. Simon Haas of the BIH, the MDC, and HI-STEM explains that our bodies dispose of old cells and form about a billion new ones every day: "It might even be more than that, depending on what the individual needs. A COVID patient, for instance, will need more immune cells to help them fight off the infection. And all those new cells come from the stem cells in our bone marrow. They keep doing their job for our entire lives."

Passive and active protection for stem cells

But because these stem cells have to produce so many cells, their genome needs extremely good protection against damage. "Any errors will be passed on to the daughter cells and multiplied," says Haas. Researchers have therefore long been trying to track down the mechanism that ensures stem cells only rarely mutate. One of them came to light a while ago: "Within the bone marrow, the stem cells reside in a stem cell niche that protects them from harmful environmental factors," says Andreas Trumpp, director of HI-STEM and head of the Stem Cells and Cancer Division at DKFZ in Heidelberg. "They sort of lie dormant there and only wake up when they're needed. It's a very reliable system. The protection only starts to decline in old age, which is why leukemia sadly occurs more frequently in older people."

But this passive protection is clearly just one part of the secret of our unscathed stem cells. Haas and his team have now discovered that occasionally mutated stem cells are apparently recognized and eliminated before they can do any damage. "The stem cell niche contains immune cells called T cells, and they regularly check which proteins are being presented on the surface of the stem cells," says Haas. "If the immune cells detect cancerous changes in a stem cell, they activate it and drive it out of the niche."

Single-cell technologies show that stem cells communicate with T cells

The researchers discovered this interaction between the T cells and the stem cells rather by chance. Pablo Hernández-Malmierca, the lead author of the study, was investigating the stem cells using gene expression analyses and single-cell technologies. "That's how we learned that the stem cells in bone marrow produce all the proteins needed for communicating with T cells in the bone marrow niche."

The team was most surprised to find that the stem cells appear to use signaling molecules that only a few specialized types of cell deploy for communicating with T cells. "The only cells that communicate via MHC class II molecules on their surface are professional antigen-presenting cells," says Haas. "This then triggers an immune response that kills infected or mutated cells. At first we couldn't believe that stem cells in bone marrow were also using this specific pathway." To check whether the stem cells actually used the MHC II molecules they were producing, second lead author Dominik Vonficht brought stem cells and T cells together in a petri dish.

"We discovered that the mutated stem cells activate the T cells by presenting fragments of their mutated proteins on the MHC II molecules. We also saw that the T cells activate the stem cells by using their T cell receptor to bind to the MHC II molecules. So the communication works in both directions," says Hernández-Malmierca. "The activated stem cells do divide, but this time both daughter cells differentiate to form blood cells – instead of one remaining a stem cell. This removes the danger of a mutated stem cell continuing to produce mutated offspring."

Rewriting the textbooks

The researchers also showed that the stem-cell safety mechanism functions via the MHC II pathway in mice. "We bred mice with two different types of stem cell: Half the stem cells were healthy, and the other half presented fragments of a diseased protein on their surface via the MHC II molecule. When we gave the mice T cells whose receptors recognized the protein, the mutated stem cells gradually disappeared from the bone marrow, leaving only the healthy ones. This protected the mice from developing leukemia," explains Alexandra Schnell of Harvard Medical School. Analysis of clinical data showed that the newly discovered mechanism also removes problematic stem cells to prevent mutations in humans.

Haas – whose research group is part of the joint focus area "Single Cell Approaches for Personalized Medicine" at the BIH, Charité, and the MDC – is delighted that the new technologies are rewriting the textbooks. "It used to be taken as given that only dendritic cells, macrophages, and B cells have MHC II molecules and present antigens. We're very surprised to have discovered that blood stem cells in bone marrow also use this very same mechanism to communicate with T cells – and I suspect that will also be the case for most of our colleagues." "In the future, the findings could help to diagnose and possibly eliminate the first degenerate cells before cancer develops," adds Andreas Trumpp.

Hernandez-Malmierca P, Vonficht D, Schnell A, Uckelmann HJ, Bollhagen A,
Mahmoud MAA, Landua SL, Van der Salm E, Trautmann CL, Raffel S, Grunschlager
F, Lutz R, Ghosh M, Renders S, Correia NC, Donato E, Dixon KO, Hirche C, Andresen C, Robens C, Werner PS, Boch T, Eisel D, Osen W, Pilz F, Przybylla A, Klein C, Buchholz F, Milsom MD, Essers MAG, Eichmuller SB, Hofmann WK, Nowak D, Hubschmann D, Hundemer M, Thiede C, Bullinger L, Muller-Tidow C, Armstrong SA, Trumpp A, Kuchroo VK, Haas S: Antigen presentation safeguards the integrity of the hematopoietic stem cell pool
.
CELL Stem Cell 2022, DOI: https://doi.org/10.1016/j.stem.2022.04.007

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 3,000 employees is the largest biomedical research institution in Germany. More than 1,300 scientists at the DKFZ investigate how cancer develops, identify cancer risk factors and search for new strategies to prevent people from developing cancer. They are developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to all questions on cancer.

Jointly with partners from the university hospitals, the DKFZ operates the National Center for Tumor Diseases (NCT) in Heidelberg and Dresden, and the Hopp Children's Cancer Center KiTZ in Heidelberg. In the German Consortium for Translational Cancer Research (DKTK), one of the six German Centers for Health Research, the DKFZ maintains translational centers at seven university partner locations. NCT and DKTK sites combine excellent university medicine with the high-profile research of the DKFZ. They contribute to the endeavor of transferring promising approaches from cancer research to the clinic and thus improving the chances of cancer patients.

The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS