Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .


These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

New leukemia subgroup identified for the first time solely by altered proteome

No. 12c | 03/03/2022

Researchers have used mass spectrometry to identify for the first time a subgroup of an aggressive blood cancer, acute myeloid leukemia (AML), that can be recognized solely at the level of the proteins. This discovery, which could enable new treatment approaches, was made by a team from the German Cancer Research Center (DKFZ), MPI of Biochemistry, German Cancer Consortium (DKTK) and the Frankfurt University Hospital."

AML under the microscope
© The Armed Forces Institute of Pathology (AFIP) / Wikipedia

In order to better treat patients diagnosed with acute myeloid leukemia (AML), the pathological processes and also existing subtypes of the disease must be better understood. With the help of proteome and genome analysis, researchers at the Max Planck Institute (MPI) of Biochemistry in Martinsried, together with cooperation partners from the University Hospital in Frankfurt am Main, have discovered a new subtype. This subgroup contains elevated levels of mitochondrial proteins and thus has altered mitochondrial metabolism. These so-called mito-AML cells can be combated more effectively with the help of inhibitors against mitochondrial respiration than with conventional chemotherapeutic agents.

Acute myeloid leukemia (AML) is an aggressive cancer originating from blood cells. When immature blood cells in the bone marrow acquire certain aberrations in their genome they become malignant and overgrow the bone marrow, the place where normally blood cells are produced. As a consequence, normal blood cells are suppressed by the leukemia cells and this leads to infections, bleeding and ultimately death of patients. Most patients diagnosed with AML undergo chemotherapy. In the last decades genomic studies identified molecular subtypes of the disease thereby opening up a perspective for personalized therapeutic approaches in AML. As a result, Clinicians and researchers now distinguish different genomic AML subtypes and for some of them they now even use specific therapeutics. These discoveries have certainly revolutionized the molecular understanding of the disease. However, despite this progress, prognosis for AML remains poor, highlighting the strong medical need for a deeper understanding of AML pathophysiology and for further innovative and more efficient therapies.

In an interdisciplinary approach, scientists around Thomas Oellerich, Hubert Serve (both University Hospital Frankfurt, DKTK & DKFZ, LOEWE FCI) and Matthias Mann (MPI) investigated whether the proteome of AML cells could aid in the identification of disease subtypes, biomarkers and therapeutic approaches. To study the protein expression profiles in AML, the team used mass spectrometry, a technology that allows to identify and quantify proteins by detecting their specific weight. In parallel, they characterized the genome of AML cells by DNA and RNA sequencing technologies.

By combining the proteomic and genomic data, several proteogenomic AML subtypes were identified, each representing specific biological features. Importantly, one subtype was only evident at the proteome level and hence was not discovered before. This subtype was characterized by high expression of mitochondrial proteins, a rewired mitochondrial metabolism and clinical resistance to chemotherapy, and was for this reason named Mito-AML. Since mitochondria are the power houses within cells, the research team further investigated whether the disease-specific metabolic alterations in Mito-AML can be therapeutically exploited. In a series of experiments, they found that drugs that interfered with mitochondrial respiration such as the BCL2 inhibitor venetoclax are highly effective in Mito-AML cells, and thus might be a more effective therapy compared to traditional chemotherapeutics. The next step is to see whether the laboratory results can be also confirmed in clinical trials.

The first authors of the study, Ashok Kumar Jayavelu, (formerly MPI of Biochemistry and now group leader at the German Cancer Research Center, Heidelberg), Sebastian Wolf (University Hospital Frankfurt) and Florian Buettner (Universitätsklinikum Frankfurt, DKTK & DKFZ, LOEWE FCI) agree: "AML is a very aggressive disease and is one of the most common blood cancers in adults. By combining our expertise from clinical, basic and data science we were able to discover disease pathophysiology, the Mito-AML subtype, that will likely influence our understanding of AML and also future clinical developments."

Hubert Serve says: "This finding became possible by close collaboration between clinicians from Frankfurt University and the Study Alliance Leukemia (SAL), a nationwide network dedicated to improve the treatment of AML, and basic scientists. It will help us to better understand why some patients respond better than others to different forms of therapy."
Matthias Mann and Thomas Oellerich further add: "The discovery of the Mito-AML subtype demonstrates the strong potential of mass spectrometry-based proteomics technology for the identification of clinically relevant biomarkers and drug targets. Our study clearly shows that genomic and proteomic data are complementing each other, thereby enabling us to elucidate so far undescribed aspects of disease biology and to nominate innovative treatment approaches. Our approach led to the discovery of new molecular AML subtypes with clinical relevance and thereby provides a proteomic nosology as a basis for an improved molecular understanding and clinical classification of AML.''

A.K. Jayavelu AK *, S. Wolf*, F. Buettner *, G. Alexe, B. Häupl, F. Comoglio, C. Schneider, C. Doebele, D. Fuhrmann, S. Wagner, E. Donato, C. Andresen, A. Wilke, A. Zindel, B. Splettstoesser, U. Plessmann, S. Münch, K.A. Elardat, P. Makowka, F. Acker, J. Enssle, A. Cremer, F. Schnuetgen, N. Kurrle, B. Chapuy, J. Löber, S. Hartmann, P. Wild, I. Wittig, D. Huebschmann, L. Kaderali, J. Cox, B. Brüne, C. Röllig, C. Thiede, B. Steffen, M. Bornhäuser, A. Trumpp, H. Urlaub, K. Stegmaier, H. Serve#, M. Mann # and T. Oellerich #: The Proteogenomic Subtypes of Acute Myeloid Leukemia. Cancer Cell, 2022, DOI: 

Source: Max Planck-Institut für Biochemie, Martinsried

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.


Subscribe to our RSS-Feed.

to top
powered by webEdition CMS