Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .


These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Blood vessels produce growth factor that promotes metastases

No. 49e | 02/09/2021 | by Koh

On the one hand, blood vessels supply tumors with nutrients and, on the other, enable cancer cells to spread throughout the body. The settlement of circulating tumor cells in a distant organ is promoted by factors whose production is induced by the primary tumor itself. Scientists from the German Cancer Research Center (DKFZ) and the Medical Faculty Mannheim, Heidelberg University, have now identified a new growth factor produced by blood vessels that enables tumor cells to metastatically colonize organs. In mice, an antibody directed against this factor was able to slow the growth of metastatic tumors.

Metastatic growth in the lungs (mouse): Tumor cells (blue) grow around blood vessels in the lungs (red) to invade into the normal lung tissue (green).
© H. Augustin/DKFZ

Malignant tumors spread throughout the body by releasing cancer cells into the bloodstream, which can reach distant organs and metastasize there. The success of a tumor cell circulating in the bloodstream to grow into a metastasis is highly dependent on the characteristics of the local environment. This process is often described as a 'seed' (circulating tumor cell) that must fall on fertile 'soil' (metastatic niche) for a new tumor to develop at the distant site. This concept leads to the hypothesis that an unsuitable 'soil' may help limit metastatic growth by allowing the scattered cancer cells to be kept in a dormant, state and not divide further.

But until now, little was known about how the microenvironment of a seeded tumor cell - known as the metastatic niche - evolves as the metastasis grows. To answer this question, a team of researchers from Heidelberg and Mannheim, led by Hellmut Augustin, together with colleagues from University College London, studied mice whose primary tumors were surgically removed. In this way, the scientists were able to observe the development of metastases in the absence of the primary tumor. "This intervention enabled us to distinguish for the first time which properties of the metastatic niche are controlled by the distant primary tumor and which are regulated locally," explains Hellmut Augustin, adding, "It is also essential that we were thus able to recreate the situation of tumor patients after surgery in the experimental system."

With a particular focus on the lung, the researchers performed global gene expression analyses of the metastatic niche. They discovered that in the presence of a primary tumor, the endothelial cells lining the interior of blood vessels produced the protein LRG1 (leucine-rich alpha-2-glycoprotein 1) in large quantities. "The blood vessels produced LRG1 exclusively in the presence of the primary tumor, which stimulates the growth of nearby connective tissue cells in the lung. This creates a tumor cell growth-promoting microenvironment ('niche') where circulating tumor cells can settle and grow into lung metastasis," said DKFZ researcher Mahak Singhal, first author of the current study, adding, "This is the first time we have demonstrated that the metastasis-promoting effect of the niche is triggered over long distances by the primary tumor." From a certain size, the metastases then act like a primary tumor themselves, again promoting the formation of LRG1.

How does the progression of metastasis change when the key molecule LRG1 is blocked with an antibody? In fact, scientists were able to slow the metastatic growth of breast and lung tumors in this way. One of the most surprising findings of the current study was that LRG1 was not only produced by blood vessels at the metastasis site, but that it was produced by endothelial cells throughout the body and released into the circulation. Thus, the researchers were even able to detect the metastasis-promoting molecule directly in blood samples. "On the one hand, we can now detect LRG1 produced by endothelial cells as a biomarker indicative of a metastatic tumor. In addition, we want to validate LRG1 as a target for new therapeutic approaches that may be able to halt the metastatic spread of tumors," says study leader Hellmut Augustin, summarizing the current results.

Mahak Singhal, Nicolas Gengenbacher, Ashik Ahmed Abdul Pari, Miki Kamiyama, Ling Hai, Bianca J. Kuhn, David M. Kallenberg, Shubhada R. Kulkarni, Carlotta Camilli, Stephanie F. Preuß, Barbara Leuchs, Carolin Mogler, Elisa Espinet, Eva Besemfelder,Danijela Heide, Mathias Heikenwalder, Martin R. Sprick, Andreas Trumpp, Jeroen Krijgsveld, Matthias Schlesner, Junhao Hu, Stephen E. Moss, John Greenwood, Hellmut G. Augustin: Temporal multi-omics identifies LRG1 as a vascular niche instructor of metastasis.
Science Translational Medicine 2021, DOI:

A picture is available for download:

Caption: Metastatic growth in the lungs (mouse): Tumor cells (blue) grow around blood vessels in the lungs (red) to invade into the normal lung tissue (green).

Note on use of images related to press releases
Use is free of charge. The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) permits one-time use in the context of reporting about the topic covered in the press release. Images have to be cited as follows: "H. Augustin / DKFZ".
Distribution of images to third parties is not permitted unless prior consent has been obtained from DKFZ's Press Office (phone: ++49-(0)6221 42 2854, E-mail: Any commercial use is prohibited.


With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.


Subscribe to our RSS-Feed.

to top
powered by webEdition CMS