Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external video platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name Youtube
Purpose External media
Strategic Communication and Public Relations

High-throughput metabolic profiling of single cells

No. 40c | 06/07/2021 | by Koh

Scientists from the European Molecular Biology Laboratory (EMBL) and the German Cancer Research Center (DKFZ) have presented a new method for generating metabolic profiles of individual cells. The method, which combines fluorescence microscopy and a specific form of mass spectroscopy, can analyze over a hundred metabolites and lipids from more than a thousand individual cells per hour. Researchers expect the method to better answer a variety of biomedical questions in the future.

Today, many biomedical disciplines focus their attention on the metabolites of individual cells. While in the past these were considered simply as degradation products or else building blocks for the synthesis of complex cellular molecules, it is now known that they also support and determine central cell functions as signaling molecules and thus make an important contribution to maintaining the healthy balance of the body. "Metabolites modulate epigenetics, they regulate the immune system, control inflammation and are thus also involved in carcinogenesis," says Mathias Heikenwälder of the German Cancer Research Center (DKFZ). "Therefore, the analysis of metabolite profiles has become the focus of interest in many research disciplines during the last few years."

It is striking that individual cells in organs or tissues do not have a uniform metabolite profile, but on the contrary often exhibit pronounced heterogeneity in the broad profile of various metabolites and lipids. The individual metabolite profile of a cell also depends on its localization within the organ. In order to assess the condition of an organ or tissue, it is therefore necessary to evaluate the metabolic profile of a large number of individual cells and simultaneously document their localization within the tissue network. With "SpaceM", the Heidelberg researchers present an innovative method to perform these analyses in high throughput fashion applied to a variety of adherent cells, in particular, liver cells.

The method is based on a combination of fluorescence microscopic images and a special form of mass spectrometry called MALDI-imaging (Matrix Assisted Laser Desorption/Ionization). Using this novel method enabled the Heidelberg researchers to detect more than 100 metabolites from more than a thousand individual cells per hour. In the future, even measurements in the subcellular scale are possible.

To validate the new method, the team studied a population of human liver cells that they stimulated with fatty acids and pro-inflammatory cytokines as an in vitro model of the Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis , the widespread diseases of the liver. They used SpaceM to obtain metabolite profiles of nearly 30,000 individual cells. A quarter of the cells had a distinctly altered lipid profile that clearly indicated an inflammatory change known as steatosis. When these cells were further stimulated with the pro-inflammatory messenger molecule IL17A, almost the entire population switched to the inflammatory phenotype. The scientists were able to confirm exactly this sequence of changes in the development of inflammatory liver disease in mice using standard measurement methods.

"SpaceM offers novel capacities for spatial single-cell metabolomics. Yet is cost-efficient and uses existing instrumentation," says EMBL's Theodore Alexandrov. We anticipate that the method and open-source algorithms will democratize single-cell metabolomics worldwide to answer a variety of pressing biomedical questions."

Luca Rappez&, Mira Stadler&, Sergio Triana, Rose M. Gathungu, Katja Ovchinnikova, Prasad Phapale, Mathias Heikenwalder* and Theodore Alexandrov*: SpaceM reveals metabolic states of single cells.
Nature Methods 2021, DOI: https://doi.org/10.1038/s41592-021-01198-0
& co-first authors; *co-last-, co-corresponding authors

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 3,000 employees is the largest biomedical research institution in Germany. More than 1,300 scientists at the DKFZ investigate how cancer develops, identify cancer risk factors and search for new strategies to prevent people from developing cancer. They are developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to all questions on cancer.

Jointly with partners from the university hospitals, the DKFZ operates the National Center for Tumor Diseases (NCT) in Heidelberg and Dresden, and the Hopp Children's Tumour Center KiTZ in Heidelberg. In the German Consortium for Translational Cancer Research (DKTK), one of the six German Centers for Health Research, the DKFZ maintains translational centers at seven university partner locations. NCT and DKTK sites combine excellent university medicine with the high-profile research of the DKFZ. They contribute to the endeavor of transferring promising approaches from cancer research to the clinic and thus improving the chances of cancer patients.

The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS