Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Sharing algorithms instead of data

No. 68 | 09/11/2020 | by Koh

The new Joint Imaging Platform – JIP for short – is a flexible, decentralized analysis platform for medical images. The JIP was initially developed for the German Cancer Consortium (DKTK) sites. It is designed to facilitate cross-institutional imaging projects and to help meet the technical and legal challenges associated with the joint use of imaging data. What is special about the platform developed at the German Cancer Research Center (DKFZ) is that all imaging data remain at the original institution and only the analysis algorithms are shared.
Within the DKTK, researchers and physicians cooperate at eight locations across Germany to speed up the translation of promising cancer research approaches into clinical practice.

Researchers at the DKFZ have set up a flexible, decentralized analysis platform for medical images: the Joint Imaging Platform, or JIP
© DKFZ/Schwerdt

Ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) – all these types of imaging are an integral part of cancer care and are vital in early detection, diagnosis, treatment planning, monitoring of individual treatment success, and follow-up care. Most cancer patients require repeated examinations using different types of tomography in the course of their treatment.

Medical images are more than just images: they are medical datasets that characterize a patient. They are therefore subject to strict data protection rules, and their use for research purposes is also closely regulated. It is technically challenging to make the imaging data anonymous – and often almost impossible in clinical practice. Current data anonymization techniques might be easy to crack in the future. Moreover, the imaging data are not uniform, as different hospitals use different IT systems and different tomographs.

Despite these difficulties, access to data on medical image processing is urgently required. Large amounts of data need to be accessed, especially for refining the promising methods of artificial intelligence (AI); in the field of medical imaging in particular, this could assist physicians and help relieve their workload.

"The obstacles in the use of medical data sometimes delay clinical cancer research considerably," remarked Heinz-Peter Schlemmer, head of the DKFZ's Radiology Division. The problem is particularly clear in the DKTK, in which more than 20 academic institutions at eight locations are linked to the DKFZ, primarily with a view to conducting joint clinical trials. "The scientific potential of the consortium is huge. However, DKTK scientists and physicians are heavily dependent on being able to access the data of the partner institutions, to share these data and to use them jointly to obtain the best possible results in research and patient care," Schlemmer added.

To address this problem, led by the image processing specialist Klaus Maier-Hein and the radiologist Heinz-Peter Schlemmer, researchers at the DKFZ have created a network between all the DKTK radiology and nuclear medicine divisions und set up a flexible, decentralized analysis platform for medical images: the Joint Imaging Platform, or JIP. "What is special about the JIP is that we take the algorithms and editing tools to the data, and not the other way round," project director Maier-Hein explained. "That means that the individual institutions retain data sovereignty. This decentralized approach allows us to comply with Europe's strict data protection requirements."

The JIP can be integrated into all existing types of clinical data processing infrastructure. "The JIP has already made decisive improvements to cooperation within the DKTK's research community in the field of radiology and nuclear medicine. A number of clinical trials are already using the platform. In fact, researchers are already asking for it to be extended, for example to include histopathological data too," Maier-Hein remarked.

The DKTK is not the only research network that requires a platform for processing medical imaging data. The National Network of University Medicine on Covid-19, an initiative recently launched by the German Federal Ministry of Education and Research to cope with the current pandemic, is another such network. The technology developed at the DKFZ is an important element in establishing the first nationwide radiology platform in Germany, in which almost all university hospitals are involved.

In future, the JIP is to be available as an open source software project too. By making the platform and the source code available, the researchers hope to help further improve the unprecedented research possibilities in data-driven medicine.

Jonas Scherer, Marco Nolden, Jens Kleesiek, Jasmin Metzger, Klaus Kades, Verena Schneider, Michael Bach, Oliver Sedlaczek, Andreas M. Bucher, Thomas J. Vogl, Frank Grünwald, Jens-Peter Kühn, Ralf-Thorsten Hoffmann, Jörg Kotzerke, Oliver Bethge, Lars Schimmöller, Gerald Antoch, Hans-Wilhelm Müller, Andreas Daul, Konstantin Nikolaou, Christian la Fougère, Wolfgang G. Kunz, Michael Ingrisch, Balthasar Schachtner, Jens Ricke, Peter Bartenstein, Felix Nensa, Daniel Funke, Alexander Radbruch, Lale Umutlu, Michael Forsting, Robert Seifert, Ken Herrmann, Philipp Mayer, Hans-Ulrich Kauczor, Tobias Penzkofer, Bernd Hamm, Winfried Brenner, Roman Kloeckner, Christoph Düber, Mathias Schreckenberger, Rickmer Braren, Georgios Kaissis, Marcus Makowski, Matthias Eiber, Andrei Gafita, Rupert Trager, Wolfgang A. Weber, Jakob Neubauer, Marco Reisert, Michael Bock, Fabian Bamberg, Jürgen Hennig, Philipp Tobias Meyer, Juri Ruf, Uwe Haberkorn, Stefan O. Schoenberg, Tristan Kuder, Peter Neher, Ralf Floca, Heinz-Peter Schlemmer, Klaus Maier-Hein: The Joint Imaging Platform for Federated Clinical Data Analytics

JCO Clinical Cancer Informatics 2020, DOI: https://doi.org/10.1200/CCI.20.00045

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS