Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .


These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Pancreatic cancer: Subtypes with different aggressiveness discovered

No. 63 | 15/10/2020 | by Rei

Tumors of the pancreas are particularly feared. They are usually discovered late and mortality is high. Until now, no targeted and personalized therapies exist. Scientists at the German Cancer Research Center (DKFZ) and the Heidelberg Institute for Stem Cell Technology and Experimental Medicine* (HI-STEM) have now succeeded for the first time in defining two differently aggressive molecular subtypes of pancreatic carcinoma. This provides new insights into the origin of the tumors. In the more aggressive group of tumors, a phenomenon known as "viral mimicry" leads to a cancer-promoting inflammatory reaction. This could possibly be the basis for the development of a targeted, subtype-oriented therapy. The results have now been published in the journal Cancer Discovery.

Cancerous cells forming a lump in the pancreatic tissue.
© Scientific Animations Inc., Wikimedia Commons

Pancreatic carcinoma is particularly insidious. The disease usually progresses without symptoms over a long period of time and is only diagnosed in advanced stages - when it is difficult to treat. The mortality rate for this tumor disease is therefore particularly high. In contrast to many other cancers, scientists have not yet succeeded in identifying efficient targets for a targeted personalized therapy. Most patients with an advanced tumor disease receive a similar treatment - usually consisting of a combination chemotherapy.

About 95 percent of all cases of pancreatic cancer are so-called adenocarcinomas. "In the past, there have been attempts to work out genetic differences, but it turned out that all adenocarcinomas of the pancreas carry a similar collection of mutations," explains Andreas Trumpp, stem cell researcher at DKFZ and HI-STEM. Trumpp's team has now chosen a different approach in collaboration with the Department of Surgery at Heidelberg University Hospital. From tissue samples from patients, they first isolated pure cancer cells from the tumors' complex cell mixture, which contains large amounts of connective tissue, vessels and immune cells. The researchers then searched the genome of the purified tumor cells for differences in the methylation pattern. These are chemical labels attached to the DNA molecule that determine whether a gene segment is active or not.

"Based on the methylation patterns of the tumor genomes, we were able to define two completely different subtypes of adenocarcinomas, which differ in the course of carcinogenesis and in their aggressiveness," says Elisa Espinet, first author of the current publication. One of the two subtypes is much more aggressive and actually develops directly from the ductal cells lining the ductal system of the pancreas, while the less aggressive tumors develop from glandular cells. "We have thus discovered a molecular signature that allows us to distinguish between two subtypes of pancreatic carcinoma that are also clinically different," explains Espinet.

What's more, upon closer analysis of the methylation patterns, the Heidelberg researchers discovered that very specific regions in the genome carry fewer methyl groups in the more aggressive subtype. These genome regions contained sequences of so-called endogenous retroviruses, remnants of viruses that have remained in the human genome during evolution. Due to the methylation of their DNA, they are normally silenced and do not play a significant role in healthy individuals. In this subtype, however, they become active again when the methyl groups are removed and form double-stranded RNA strands.

This type of RNA molecule does not normally occur in the body and is therefore a warning signal for the immune system that viruses have entered the cell. As a result, the interferon system is activated and tries to fight the supposedly invading viruses. As a result, inflammatory messengers are also released in the vicinity of the tumor. "Feigning a viral infection in genetically modified tumor cells is called "viral mimicry", says Espinet. In the tumor, the viral mimicry promotes certain inflammatory reactions that further drive cancer growth and, in addition, probably stimulates metastasis, i.e. the formation of the dreaded daughter tumors.

The DKFZ researchers found viral mimicry only in the ductal subtype and in traces also in healthy ductal cells, but not in the healthy glandular cells of the pancreas or the pancreatic cancer cells of the less aggressive subtype. This explained why pancreatic tumors that develop directly from the cells of the pancreatic ducts, which accounted for about one third of the tumors studied, are particularly aggressive.

At the same time, the result opens up new perspectives for a more targeted and personalized therapy of pancreatic cancer. "By blocking the interferon signaling pathways at various sites, we were able to significantly slow down cancer growth in mice to which human pancreatic cancer cells had been transferred. However, the regulation of these signals is highly complex. We are now looking for ways to not only slow down the tumor cells, but actually eliminate them," says Trumpp, explaining the further progress of preclinical research.

*The Heidelberg Institute for Stem Cell Research and Experimental Medicine (HI-STEM) gGmbH was founded in 2008 as a public-private partnership between the DKFZ and the Dietmar Hopp Foundation.

Elisa Espinet, Zuguang Gu, Charles D. Imbusch, Nathalia A. Giese, Magdalena, Büscher, Mariam Safavi, Silke Weisenburger, Corinna Klein, Vanessa Vogel, Mattia Falcone, Jacob Insua-Rodríguez, Manuel Reitberger, Vera Thiel, Steffi O. Kossi, Alexander Muckenhuber, Karnjit Sarai, Alex YL Lee, Elyne Backx, Soheila Zarei, Matthias M. Gaida, Manuel Rodríguez-Paredes, Elisa Donato, Hsi-Yu Yen, Roland Eils, Matthias Schlesner, Nicole Pfarr, Thilo Hackert, Christoph Plass, Benedikt Brors, Katja Steiger, Dieter Weichenhan, H. Efsun Arda, Ilse Rooman, Janel L. Kopp, Oliver Strobel, Wilko Weichert, Martin R. Sprick* and Andreas Trumpp*: Aggressive PDACs show hypomethylation of repetitive elements and the Execution of an intrinsic IFN program linked to a ductal Cell of origin
Cancer Discovery 2020, DOI: 10.1158/2159-8290.CD-20-1202

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.


Subscribe to our RSS-Feed.

to top
powered by webEdition CMS