Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Preventing metastasis - an antibody with therapeutic potential

No. 25 | 24/04/2020 | by Rei

A receptor in the cell layer that lines the blood vessels from the inside stimulates both the formation of new blood vessels in tumors and metastasis. Scientists at the German Cancer Research Center in Heidelberg (DKFZ) and the Mannheim Medical Faculty of the University of Heidelberg have succeeded in blocking this receptor with an antibody to thus prevent the growth of metastases in mice with breast or lung cancer. In animal experiments, they have thus shown a new principle for slowing down the metastatic dissemination of cancer cells.

A blood vessel (red) grows into the metastasis (blue) in the lung of a mouse.
© Augustin/DKFZ

Just like healthy tissue, tumors depend on nutrients that they receive via the bloodstream. However, since cancer cells proliferate rapidly and the tumors grow correspondingly fast, a bottleneck can develop here - if new blood vessels do not sprout at the same time. In addition, these new blood vessels are transport routes through which cancer cells reach distant organs where they grow into metastases. One goal in cancer therapy is therefore to prevent angiogenesis, i.e. the formation of new blood vessels, in order to deprive the tumor from nutrients and slow down metastasis. Drugs suppressing angiogenesis have already been in clinical use for more than a decade - albeit with limited efficacy.

Two years ago, Hellmut Augustin's team of researchers from Heidelberg and Mannheim discovered a new target through which this could work: A receptor molecule called Tie1. It is produced in the endothelial cells, i.e. in the cell layer that lines the blood vessels from the inside. It is also known that Tie1 is produced in greater quantities during tumor development and during the growth of blood vessels in the tumor. "We do not know the binding partner of Tie1 and therefore cannot yet say in detail how the receptor works," says DKFZ researcher Mahak Singhal, lead author of the current study. But scientists have found out that as cancer progresses, Tie1 helps the blood vessels and tumors to accelerate their growth. In addition, Tie1 destabilizes the walls of the blood vessels and thus promotes the development of metastases. If Tie1 is genetically knocked out in mice, this suppresses both tumor growth and metastasis.

Tie1 is therefore an interesting target for cancer therapy. The scientists consequently set out experiments to generate and test a number of antibodies directed against Tie1. In fact, they were able to identify a promising candidate. If mice with breast or lung tumors were treated with the antibody, cancer growth was slowed down. However, there was no noticeable effect on the formation of blood vessels in the tumors. Importantly, the treated animals showed significantly less metastases compared to untreated mice with breast or lung tumors.

This implies that although the antibody is not able to effectively prevent angiogenesis in the tumor, it has the potential to slow down the formation of metastases during cancer therapy. "However, we have only observed the therapeutic potential of the antibody in experimental animals," emphasizes Hellmut Augustin, who is concerned about not raising premature hopes. "Many experiments and studies are still needed before it may one day actually be used to treat cancer patients."

Singhal M, Gengenbacher N, La Porta S, Gehrs S, Shi J, Kamiyama M, Bodenmiller DM, Fischl A, Schieb B, Besemfelder E, Chintharlapalli S, Augustin HG. Preclinical validation of a novel metastasis-inhibiting Tie1 function-blocking antibody.
EMBO Molecular Medicine 2020, DOI: 10.15252/emmm.201911164

A picture is available for download:
www.dkfz.de/de/presse/pressemitteilungen/2020/bilder/Augustin_Lungenmetastasen_Maus_EMBO.jpg 
Caption: A blood vessel (red) grows into the metastasis (blue) in the lung of a mouse.

Note on use of images related to press releases
Use is free of charge. The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) permits one-time use in the context of reporting about the topic covered in the press release. Images have to be cited as follows: "Source: Augustin/DKFZ".
Distribution of images to third parties is not permitted unless prior consent has been obtained from DKFZ's Press Office (phone: ++49-(0)6221 42 2854, E-mail: presse@dkfz.de). Any commercial use is prohibited.

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS