Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .


These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Inflammation signals induce dormancy in aging brain stem cells

No. 14 | 28/02/2019 | by Koh

In old age, the amount of stem cells in the brains of mice decreases drastically. The remaining ones protect themselves from completely vanishing by entering a state of dormancy, scientists from the German Cancer Research Center (DKFZ) have now reported in "CELL". The old stem cells are hard to awaken, but once reactivated, they are just as potent as young ones. Their dormancy is promoted by inflammatory signals from the stem cells' environment. Anti-inflammatory substances may therefore be a key to awakening the stem cells and stimulating repair processes in the brain in old age.

Aging brain stem cells also sleep, as a reaction to inflammatory signals from their cellular environment
© Adobe Stock

Stem cells in certain areas of the adult brain are capable of generating new nerve cells (neurons) for life. These stem cells are also activated in the wake of injury to the brain and, additionally, may form the cells of origin to specific brain tumors.

However, in the aging brain, the replenishment of young neurons diminishes. Scientists in the team of Ana Martin-Villalba, a stem cell researcher at the German Cancer Research Center (DKFZ) in Heidelberg, in collaboration with colleagues from the Universities of Heidelberg and Luxemburg, have now discovered a cause for this loss of function. They discovered that the amount of stem cells drastically declines as aging progresses. "This is because most stem cells disappear in the process of differentiating into mature brain cells and only a small portion of them generates new stem cells," Martin-Villalba explains. "If they did not increasingly enter into a state of dormancy without dividing actively as the brain ages, the supply of stem cells in the brain of an old mouse would be completely exhausted. They are using the dormancy to gain time."

Not only does the number of dormant stem cells increase in old age, they are also harder to awaken from their dormant state by emergency signals such as injury. But once awakened, they are just as potent as young stem cells in regenerating neurons.

The team found out that the dormancy appears to be promoted by inflammatory chemical messengers and signals of the key Wnt signaling chain which are transmitted from the stem cells' immediate surroundings, called "niche". When these signals are blocked using antibodies, the dividing activity of neural stem cells increases again and they provide more neurons for everyday life as well as for repair processes.

"The central finding of our work is that dormancy promoted by inflammation is a key characteristic of aging brain stem cells," says Martin-Villalba. "However, drugs can be used to reduce inflammation. This may be an approach to stimulating the regeneration of neurons and initiating repair mechanisms in the brain in old age."

Kalamakis Georgios, Brüne Daniel, Ravichandran Srikanth, Bolz Jan, Fan Wenqiang, Ziebell Frederik, Stiehl Thomas, Catalá-Martínez Francisco, Kupke Janina, Zhao Sheng, Llorens-Bobadilla Enric, Bauer Katharina, Limpert Stefanie, Berger Birgit, Christen Urs, Schmezer Peter, Mallm Jan Philipp, Berninger Benedikt, Anders Simon, Del Sol Antonio, Marciniak-Czochra Anna, Martin-Villalba Ana: Quiescence modulates stem cell maintenance 1 and regenerative capacity in the aging brain.
CELL 2019, DOI: 10.1016/j.cell.2019.01.040


With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.


Subscribe to our RSS-Feed.

to top
powered by webEdition CMS