Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

How blood vessels slow down and accelerate tumor growth

No. 38c | 18/07/2017 | by Koh

Scientists from the German Cancer Research Center (DKFZ) and Heidelberg University have discovered a new mechanism that causes faster sprouting of blood vessels. Cells of a specific type called pericytes, which are attached to the outside of fine blood vessels, are involved in this process. If a particular protein molecule is switched off, this leads to the formation of significantly more, albeit immature, vessels, the scientists now report. As a result, the tumor gets supplied better and can grow faster.

Co-culture of endothelial cells (green) and pericytes (red) results in spheroids which are used to study the interactions of the two cell types in 3D
© Milde/DKFZ

Cancer cells have an enormous need for oxygen and nutrients. Therefore, growing tumors rely on the simultaneous growth of capillaries, the fine branching blood vessels that form a supply network for them. The formation of new blood vessels, called angiogenesis, is therefore a possible target for cancer therapy. Physicians use special inhibitors called angiogenesis inhibitors to "starve" tumors. However, these drugs, which have been in use for more than a decade, have limited effectiveness. Deeper understanding of the underlying mechanisms may help identify further therapy targets in order to prevent vessel formation more effectively.

Hellmut Augustin's team at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and the University Medical Faculty Mannheim of Heidelberg University has now discovered a new mechanism that promotes the growth of blood vessels in tumors. Pericytes, a type of cells that are attached to the outside of blood capillaries and stabilize them, play a central role in this process; they also influence the growth of blood vessels.

Augustin and his co-workers have discovered that pericytes exhibit a receptor molecule called Tie2 on their surface. If vascular growth factors called angiopoietins attach to the Tie2 receptor, the growth of new capillaries initially stops and existing ones can mature. This controlled growth leads to healthy vessels and, thus, a functioning blood supply system in the body.

The scientists have now succeeded in breeding mice whose pericytes have no Tie2 receptor. In these animals, vascular maturation after birth was slow at first. However, they developed in a normal way and did not exhibit any vascular disorders at adult age. However, if these mice developed tumors, these were pervaded by significantly more blood vessels and, in addition, grew faster than in fellow animals with functioning Tie2 receptor. "Thus, we have proven that Tie2 on pericytes serves as a growth brake for vessels and, hence, also for tumors," said Laura Milde, who is one of the first authors of the publication.

The article sheds new light on the development of blood vessels. "Up to now, the Tie2 receptor has only been known in endothelial cells that line the inside of blood vessels," Milde said. "The fact that turning off Tie2 in pericytes accelerates tumor growth so much came as a real surprise to us."

So far, the function of pericytes has remained largely in the dark. The results obtained by the DKFZ researchers are the first to attribute an important role in tumor development to them. "Drugs that interfere with Tie2 signaling are already in the clinical testing stage," Augustin said. "The proof that Tie2 on pericytes influences vascular formation in tumors is an important contribution towards developing combination therapies in which the new angiogenesis inhibitors will support the effectiveness of already approved substances."

Martin Teichert, Laura Milde, Annegret Holm, Laura Stanicek, Nicolas Gengenbacher, Soniya Savant, Tina Ruckdeschel, Zulfiyya Hasanov, Kshitij Srivastava, Junhao Hu, Stella Hertel, Arne Bartol, Katharina Schlereth and Hellmut G. Augustin: Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nature Communications 2017, DOI: 10.1038/ncomms16106

An image for this press release is available at:
http://www.dkfz.de/de/presse/pressemitteilungen/2017/bilder/Teichert-et-al-Featured-Image.jpg

Picture Caption: Co-culture of endothelial cells (green) and pericytes (red) results in spheroids which are used to study the interactions of the two cell types in 3D

Note on use of images related to press releases
Use is free of charge. The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) permits one-time use in the context of reporting about the topic covered in the press release. Images have to be cited as follows: "Source: Milde/DKFZ".
Distribution of images to third parties is not permitted unless prior consent has been obtained from DKFZ's Press Office (phone: ++49-(0)6221 42 2854, E-mail: presse@dkfz.de). Any commercial use is prohibited.

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS