Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

How bile duct cancer develops and how it can be prevented

No. 34 | 12/06/2017 | by Koh

What promotes the development of bile duct cancer in the liver? Are these factors different from those that are responsible for the much more common hepatocellular carcinomas? Scientists from the German Cancer Research Center (DKFZ) and from the Technical University of Munich (TUM) have been the first to uncover the molecular and cellular causes that selectively lead to the development of bile duct cancer in mice. The researchers also discovered that antioxidants or an inhibitor of a specific key enzyme can be used to stop this cancer-promoting process.

The artistic illustration depicts the role of reactive oxygen species, TNF, and JNK in the formation of liver malignancies - hepatocellular carcinoma or intrahepatic cholangiocarcinoma.
© Peter von Walter/DKFZ

Two different types of cancer can develop in the liver. The more common malignant tumors are hepatocellular carcinomas, which arise from liver cells. Less common in the liver is bile duct cancer (cholangiocarcinoma), which originates from bile duct cells or undifferentiated liver cells. Both types of cancer are difficult to treat – and the number of newly diagnosed cases has been on the rise in recent years. In the U.S.A., they are the second most frequent cause of death from cancer today and the cancer type with the fastest growth rate of new cases.

"Up to now, we have had hardly any clues about what promotes bile duct cancer and, therefore, we have had no possibility to use drugs to stop this process," said Mathias Heikenwälder from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) in Heidelberg. "In our present work, we have not only identified a key signaling pathway that causes bile duct cells to turn cancerous but we also show several possibilities to interrupt this cancer-promoting process."

Further major contributors to the current study are Heikenwälder's colleague Dirk Haller from the Technical University of Munich (TUM) as well as researchers from the German Research Center for Environmental Health (Helmholtz Zentrum München), Tübingen University Hospital and the University of Tübingen. The scientists first studied liver tissue samples from mice and also from humans. In the environment of cholangiocarcinomas, they always found very high levels of harmful reactive oxygen species (ROS).

Are reactive oxygen species the cause?

ROS are typically found in liver tissue that has been damaged by inflammation such as in viral hepatitis or alcohol abuse. These conditions are associated with an increased risk of developing cancer of the liver.

The researchers wanted to know whether high ROS levels causally and specifically promote the development of bile duct cancer and whether they also promote hepatocellular cancer. At TUM, Haller succeeded in breeding mice with a specific defect in the mitochondria of the liver. This defect leads to high ROS levels, thus simulating the situation in a severely damaged liver.

When the animals were several weeks old, numerous growth sites of bile duct cells were in fact found in their livers. Pathologists clearly identified them as cancer precursors that also contained tumor stem cells. In the neighborhood of these growth sites, the investigators discovered increased quantities of Kupffer cells. These specialized macrophages in the liver produce a chemical messenger called TNF that has a growth-promoting effect on surrounding cells. TNF activates an enzyme called JNK, thus triggering proliferation of the bile duct cells.

By contrast, mice whose cells were unable to produce TNF receptors were protected against the uncontrolled growth of the bile duct cells; their livers were less damaged and the animals survived longer.

Antioxidants and agents against JNK can stop tumorigenesis

Does this link between high ROS levels, TNF and the development of bile duct cancer also apply to humans? "We believe it does," said Darjus Tschaharganeh from the DKFZ, "because we found very high levels of both TNF and the activated form of JNK directly in the tumor tissue in samples that were obtained from patients during surgery for bile duct cancer."

"Once we had identified the molecular connections, we could specifically search for possibilities to interrupt this signaling pathway," said Heikenwälder. When the research team treated the mice with agents that inhibit the JNK enzyme, the animals developed significantly fewer bile duct carcinomas. "When we added an antioxidant to their food, the condition of their livers improved and they lived longer," he added. "The reactive oxygen species were blocked and the growth of the bile duct cells was reduced to almost nothing. By contrast, the antioxidative substance had virtually no impact on the liver cells."

In a next step, the team led by Heikenwälder wants to find out whether the antioxidants or the agent against JNK, respectively, also have therapeutic potential. The researchers will conduct preclinical studies to examine whether it is also possible to use the substances to influence already established bile duct cancer and which genetic factors might play a role in this process.

Detian Yuan, Shan Huang, Emanuel Berger, Lei Liu, Nina Gross, Florian Heinzmann, MarcRingelhan, Tracy O Connor, Mira Stadler, Michael Meister, Julia Weber, Rupert Öllinger, Nicole Simonavicius, Florian Reisinger, Daniel Hartmann, Rüdiger Meyer, Maria Reich, Marco Seehawer, Valentina Leone, Bastian Höchst, Dirk Wohlleber, Simone Jörs, Marco Prinz, Duncan Spalding, Ulrike Protzer, Tom Luedde, Luigi Terracciano, Matthias Matter, Thomas Longerich, Percy Knolle, Thomas Ried, Verena Keitel, Fabian Geisler, Kristian Unger, Einat Cinnamon, Eli Pikarsky, Norbert Hüser, Roger J. Davis, Darjus F. Tschaharganeh, Roland Rad, Achim Weber, Lars Zender, Dirk Haller, Mathias Heikenwälder: Kupffer cell-derived Tnf triggers cholangiocellular tumorigenesis through JNK due to chronic mitochondrial dysfunction and ROS.
Cancer Cell 2017, DOI: 10.1016/j.ccell.2017.05.006

An image for this press release is available at:
http://www.dkfz.de/de/presse/pressemitteilungen/2017/bilder/Heidenwaelder_Cancer_Cell_HELM.jpg

Caption: The artistic illustration depicts the role of reactive oxygen species, TNF, and JNK in the formation of liver malignancies - hepatocellular carcinoma or intrahepatic cholangiocarcinoma.

Note on use of images related to press releases
Use is free of charge. The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) permits one-time use in the context of reporting about the topic covered in the press release. Images have to be cited as follows: "Source: Peter von Walter/DKFZ".
Distribution of images to third parties is not permitted unless prior consent has been obtained from DKFZ's Press Office (phone: ++49-(0)6221 42 2854, E-mail: presse@dkfz.de). Any commercial use is prohibited.

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS