Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Mysterious gene transcripts after cancer therapy

No. 33 | 12/06/2017 | by Rei/Koh

Drugs that are used in cancer therapy to erase epigenetic alterations in cancer cells simultaneously promote the production of countless mysterious gene transcripts, scientists from the German Cancer Research Center (DKFZ) now report in Nature Genetics. The substances activate hidden regulatory elements in DNA. The unusual gene activity has the potential to stimulate the immune system – a previously unnoticed effect that may increase the effect of therapeutic agents.

© Schuster, DKFZ

Tumor suppressor genes protect cells from malignant transformation. If they are turned off as a result of chemical modifications in DNA, called epigenetic labels, this contributes to the development of cancer. As opposed to gene mutations, these epigenetic changes are reversible and it is possible to use specific drugs to erase them.

"This has been successfully done for years now in various cancers such as acute myeloid leukemia and myelodysplastic syndrome," said Christoph Plass from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) in Heidelberg. He added that it has also been proven that dangerous labels such as on tumor suppressor genes can be removed in this way. "However, the agents pass over the DNA like a lawn mower and remove practically all labels," said Plass, who also serves as a research coordinator within the German Cancer Consortium (DKTK). "And so far nobody has studied in detail what effect this has on the tumor cells."

Plass and his co-workers have now pursued this question in collaboration with colleagues from the U.S.A. Using genome-wide analyses, the scientists discovered that countless mysterious gene transcripts arise in the wake of treatment. This is due to an activation of specific regulatory elements in DNA, called promoters, which have been largely unnoticed so far. "There is total chaos in the treated cancer cells – we hadn't expected that," said David Brocks, who is one of the first authors of the study.

A closer look has shown that the activated regulatory elements originate from viruses that inserted themselves into the genome in the ancient past. However, they were turned off in the course of evolution, thus becoming normal components of DNA.

Protein fragments that form on the basis of these peculiar gene transcripts have the potential to be recognized by the immune system and, thus, to stimulate the immune system. This might increase the effectiveness of drugs that are being used. "Now we have to investigate whether this effect can be used specifically to improve therapy," Plass said. And yet another aspect: "These gene transcripts might be useful as biomarkers to examine whether an epigenetic therapy is effective and reasonable in the individual patient."

David Brocks, Christopher R. Schmidt, Michael Daskalakis, Hyo Sik Jang, Nakul M. Shah,Daofeng Li, Jing Li, Bo Zhang, Yiran Hou, Sara Laudato, Daniel B. Lipka, Johanna Schott, Holger Bierhoff, Yassen Assenov, Monika Helf, Alzbeta Ressnerova, Md Saiful Islam, Anders M. Lindroth, Simon Haas, Marieke Essers, Charles D. Imbusch, Benedikt Brors, Ina Oehme, Olaf Witt, Michael Lübbert, Jan-Philipp Mallm, Karsten Rippe, Rainer Will, Dieter Weichenhan, Georg Stoecklin, Clarissa Gerhäuser, Christopher C. Oakes, Ting Wang, und Christoph Plass: DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nature Genetics, 2017, DOI: 10.1038/ng.3889

An image for this press release is available at:
http://www.dkfz.de/de/presse/pressemitteilungen/2017/bilder/DNA-Methylierung_Quelle_Schuster_DKFZ.jpg

Note on use of images related to press releases
Use is free of charge. The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) permits one-time use in the context of reporting about the topic covered in the press release. Images have to be cited as follows: "Source: Schuster, DKFZ".
Distribution of images to third parties is not permitted unless prior consent has been obtained from DKFZ's Press Office (phone: ++49-(0)6221 42 2854, E-mail: presse@dkfz.de). Any commercial use is prohibited.

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS