Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .


Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

RNA glue for the protein assembly line

No. 45c2 | 16/10/2015 | by Sel

Scientists from the German Cancer Research Center (DKFZ) have discovered how RNA molecules regulate the structure of the nucleolus and drive the synthesis of the cellular machinery needed for protein production. When cells grow and divide rapidly, they need to run up the production of proteins. The cellular machinery for this task is synthesized and assembled in a special compartment of the cell nucleus called the nucleolus. The nucleolus constantly adapts its shape if the cell needs to produce more or less protein. Accordingly, fast dividing tumor cells often have bigger nucleoli.

Lowering the level of aluRNA induces the dispersion of nucleolar compartments into smaller nucleolar domains, which are less efficient. Increasing the level of aluRNA forces fusion into larger and more active nucleolar domains.

Scientists from the DKFZ have now found a novel mechanism that sheds light on how the nucleolus is able to change its structure as needed. Cells have to continually tune their metabolism in response to signals from their environment. To cope with this need, the nucleolus has a very dynamic structure. It becomes bigger if cells’ metabolism is high, as it is the case for cancer cells that grow and spread very rapidly. On the other hand, structural aberrations and decreased activity of the nucleolus are found in starving cells or in association with heart disease and neurological disorders. Thus, it reflects the cell’s condition and acts as a central hub for integrating and responding to external and cellular signals. In extreme cases, stress stimuli applied to the nucleolus can lead to cell death. This characteristic is currently exploited to develop therapeutic treatments, which target the nucleolus, to block highly proliferating cancer cells. However, in order to increase chances of succeeding in that direction, a better knowledge of the processes governing nucleolus organization and function is necessary.

The DKFZ scientists observed that inhibiting the production of RNAs coding for proteins, the messenger RNAs, completely shattered the nucleolus into small pieces. By sequencing the RNA content of nucleoli, they identified parts of messenger RNAs that were needed for keeping the structure intact. This RNA type, called aluRNA, originated from what was previously thought to be a useless by-product of messenger RNA synthesis. The aluRNA binds to certain proteins and, like a glue, keeps together the parts of the genome that associate within the nucleolus.

In the experiments it appears that the nucleolus behaves like a drop of oil in water. “If we degrade the aluRNA in the cell, the nucleolus falls apart like oil patches that disperse into small droplets when shaking a vinaigrette”, said Maïwen Caudron-Herger, the lead author of the study from the group of Karsten Rippe, who conducted the work together with the team of Ingrid Grummt at the DKFZ. Thus, the aluRNAs are needed for the droplets to fuse together and to form larger and properly functional nucleolus.

A detailed understanding of the mechanisms that govern nucleolus assembly, disassembly and function has important implications for explaining its disease-related deregulation and developing therapeutic treatments. One question that the DKFZ researchers want to address in their future work is the function of aluRNA for the abnormally high nucleolus activity of rapidly dividing cancer cells that often have extra nucleoli.

Caudron-Herger M, Pankert T, Seiler J, Németh A, Voit R, Grummt I and Rippe K. (2015). Alu element-containing RNAs maintain nucleolar structure and function. The EMBO Journal, doi: 10.15252/embj.201591458

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 3,000 employees is the largest biomedical research institution in Germany. More than 1,300 scientists at the DKFZ investigate how cancer develops, identify cancer risk factors and search for new strategies to prevent people from developing cancer. They are developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to all questions on cancer.

Jointly with partners from the university hospitals, the DKFZ operates the National Center for Tumor Diseases (NCT) in Heidelberg and Dresden, and the Hopp Children's Cancer Center KiTZ in Heidelberg. In the German Consortium for Translational Cancer Research (DKTK), one of the six German Centers for Health Research, the DKFZ maintains translational centers at seven university partner locations. NCT and DKTK sites combine excellent university medicine with the high-profile research of the DKFZ. They contribute to the endeavor of transferring promising approaches from cancer research to the clinic and thus improving the chances of cancer patients.

The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.


Subscribe to our RSS-Feed.

to top
powered by webEdition CMS