Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .


These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Stellate cells in the liver control regeneration and fibrosis

No. 10 | 23/02/2015 | by Koh

Scientists from the German Cancer Research Center (DKFZ) and the Medical Faculty in Mannheim at Heidelberg University are searching for new approaches to prevent liver fibrosis. They have identified a surface molecule on special liver cells called stellate cells as a potential target for interfering with this process. When the researchers turned off the receptor, this led to reduced liver fibrosis and improved regeneration of hepatic cells.

Liver fibrosis in a mouse: Labeling of two characteristic proteins (yellow) shows pathogenic changes in the organ.
© Carolin Mogler, DKFZ

Liver fibrosis, which is the progressive formation of scar tissue in the liver, is a massive medical problem. An estimated ten percent of the population is affected by liver fibrosis or its corresponding later stage, liver cirrhosis. A variety of causes can lead to liver fibrosis, the most widely recognized ones being alcohol consumption and virus-induced chronic liver inflammation. Other factors that can lead to scarring in the liver include the use of certain drugs, fatty liver disease and genetic disorders such as iron overload disease. As fibrosis progresses, the liver tissue becomes increasingly nodular, and the disease turns into liver cirrhosis, a dangerous condition that also drastically increases the risk of developing liver cancer.

The working group of Professor Hellmut Augustin at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and the Medical Faculty in Mannheim at Heidelberg University has now detected a new molecule on the surface of hepatic stellate cells that is a major contributor to the development of liver fibrosis. Hepatic stellate cells are a type of specialized cell in the walls of blood vessels. Their functions in the liver include storing vitamin A and regulating blood flow. They are considered to be initiators of liver fibrosis: In the wake of liver damage, these cells produce key substances for the formation of scar tissue and release them into the surrounding environment. If the liver damage cannot be completely repaired by dividing liver cells, this scar tissue stays put, giving rise to liver fibrosis.

The scientists in Augustin’s group have now discovered a protein called endosialin on the surface of hepatic stellate cells that activates these cells and, thus, also promotes the production of scar tissue. Genetically modified mice whose cells had no endosialin developed considerably less liver fibrosis after prolonged liver damage than normal animals whose cells were able to produce endosialin.

Surprisingly, the absence of endosialin not only reduced scarring and the activation of hepatic stellate cells but also improved the regenerative capacity of the remaining liver cells without leading to proliferative growth of the liver. Hence, endosialin can influence the critical balance between scar formation and liver regeneration.

Endosialin also appears to play a role in human liver fibrosis: The scientists examined samples from healthy liver tissue and from liver tissue at various stages of liver fibrosis, through to cirrhosis, to determine their levels of endosialin.

“Endosialin is produced at very elevated levels primarily in the early, active phase of liver fibrosis,” explains Carolin Mogler, first author of the publication. “Many molecules are produced at different levels after liver damage, but we were very surprised by the extent to which the stellate cells increase the production of endosialin. These findings help us better understand how liver fibrosis develops.”

These findings, obtained in a basic research setting, are still a long way from potential clinical application. However, an antibody that blocks endosialin is already being tested in clinical trials with the goal of treating specific types of tumors. The scientists now plan to investigate whether this antibody might also be useful for treating other diseases such as liver fibrosis.

Carolin Mogler, Matthias Wieland, Courtney König, Junhao Hu, Anja Runge, Claudia Korn, Eva Besemfelder, Katja Breitkopf-Heinlein, Dorde Komljenovic, Steven Dooley, Peter Schirmacher, Thomas Longerich, Hellmut G. Augustin: Hepatic stellate cell expressed Endosialin balances fibrogenesis and hepatocyte proliferation during liver damage.

EMBO Mol Med 2015, DOI: 10.15252/emmm.201404246

A picture for this press release is available at:

Caption: Liver fibrosis in a mouse: Labeling of two characteristic proteins (yellow) shows pathogenic changes in the organ.
Source: Carolin Mogler, DKFZ 

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.


Subscribe to our RSS-Feed.

to top
powered by webEdition CMS