Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .


These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Oxidative stress: Alternative utilization of glucose ensures survival of the cell

No. 03 | 15/01/2015 | by Koh

Oxidative stress in the cell blocks the normal sugar metabolism. Scientists from the German Cancer Research Center (DKFZ) and the Heidelberg Institute for Theoretical Studies (HITS) have now found out that this long known interruption of the normal sugar metabolism under stress conditions is not an uncontrolled disruption. On the contrary, it is vital for the survival of the cells. It is based on a highly specific mechanism that formed early during evolution and can even be found in bacteria. Cancer cells may particularly benefit from this mechanism.

© BirgitH

Glucose provides energy and components for the cells in our body. Scientists have known for many years that the normal breakdown of glucose is disrupted under oxidative stress as can arise, for example, in inflammatory or toxic processes. The reason for this is that one of the key enzymes in glucose breakdown, GAPDH (glycerinaldehyde 3-phosphate dehydrogenase), is oxidized extremely rapidly and efficiently by hydrogen peroxide (H2O2) and is inactivated in the process. In chronic inflammatory reactions, immune cells permanently release H2O2 – a characteristic of oxidative stress.

But why is it that GAPDH is inactivated by hydrogen peroxide much more easily and rapidly than other enzymes? And what does the interruption of the glucose breakdown mean for the cell? “Until now, scientists have believed that the oxidative inactivation of GAPDH is just an inevitable side effect of its generally high reactivity,” says Tobias Dick from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ).”To break down glucose efficiently, the GAPDH enzyme has a highly reactive center, which reacts non-specifically with H2O2 and thereby inhibits itself," says Dick, describing the commonly used explanation of this phenomenon. Thus, it has been presumed until now that for the cell to produce energy from glucose efficiently, it has to put up with the fact that the glucose metabolism is disrupted in the case of oxidative stress.

In a collaboration with a team headed by Frauke Gräter from the Heidelberg Institute for Theoretical Studies (HITS) and colleagues from the National Institute of Oncology in Budapest, Dick’s working group has now shown that the contrary is the case: The scientists have discovered a previously unknown mechanism that specifically induces the reaction of GAPDH with H2O2.

Using laboratory experiments and computer simulations, the researchers found out that the high sensitivity of GAPDH to H2O2 is not a side effect of GAPDH’s general reactivity, as scientists have believed until now. Instead, GAPDH accelerates its own oxidative inactivation in a specific process that is independent of its activity in the glucose metabolism.

“We were surprised to discover that this special mechanism can be found in the GAPDH of almost all life forms, from bacteria to man. All this suggested that it plays a fundamental role for survival under stress conditions,” Dick explains.

The scientists generated a genetically modified GAPDH that fully retains its normal glycolytic activity without being sensitive to inhibition by H2O2. In yeast strains, they replaced the normal enzyme by the oxidation-insensitive variant. No differences were observed under normal conditions, i.e., glucose metabolism and cell growth were the same with both variants.

Under oxidative stress, however, the cells with the normal oxidation-sensitive GAPDH had a significant advantage for growth: As the researchers demonstrated, the oxidative blocking of GAPDH led to an alternative utilization of glucose. This alternative path primarily promoted the formation of NADPH, a molecule that counteracts oxidation and helps the cell cope with oxidative stress. Thus, the disruption of the normal glucose metabolism in the cell generates a key advantage for survival. This also explains why the mechanism of oxidative inactivation of GAPDH formed early in the evolution of organisms and has been conserved to the present day.

In a next step, the researchers plan to investigate whether cancer cells may also benefit from oxidative inactivation of GAPDH. David Peralta, the first author of the study, explains: “Cancer cells use particularly high amounts of glucose and additionally are under oxidative stress. We therefore presume that they use oxidative inactivation of GAPDH for their own purposes. By switching off this mechanism, we might hit cancer cells extremely hard.”

David Peralta, Agnieszka K Bronowska, Bruce Morgan, Éva Dóka, Koen Van Laer, Péter Nagy, Frauke Gräter, Tobias P Dick (2015). A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nature Chemical Biology 2015, DOI: 10.1038/nchembio.1720

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.


Subscribe to our RSS-Feed.

to top
powered by webEdition CMS