Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .


These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Defective tumor suppressor leads to leukemia - by an indirect route

No. 53c | 24/10/2013 | by Koh

Cancer often arises as a result of defects in genes known as tumor suppressors that inhibit cell growth. Scientists at the German Cancer Research Center (DKFZ) have studied how the loss of a tumor suppressor called PTEN leads to the development of leukemia. They were surprised to discover that the absence of PTEN does not cause blood stem cells themselves to divide excessively. Instead, leukemia develops as a result of the overproduction of a chemical messenger (G-CSF) in granulocytes that causes blood stem cells to leave the bone marrow and migrate into the spleen, where this causes an out-of-control multiplication of white blood cells.

Model of PTEN. Picture: Hypomorph, Wikimedia Commons

Genetic defects that lead to cancer can basically be classified in two groups: defects that turn growth-promoting genes into permanently activated “cancer genes” (oncogenes), and defects that cause a growth-inhibiting gene, or tumor suppressor, to lose its functions.

Every cell contains multiple tumor suppressors; some have been found to undergo mutations in numerous types of cancers. One of these is the phosphatase PTEN, an enzyme which is often defective in cancers such as glioblastoma, prostate cancer and leukemia. In these cases it loses its capacity to repress growth and promotes the development of cancer.

“We always believed that a PTEN defect causes blood stem cells in the bone marrow to divide infinitely, and that this leads to leukemia,” says Prof. Andreas Trumpp, a stem cell expert. Trumpp is head of DKFZ’s Division of Stem Cells and Cancer and director of the Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), which is supported by the Dietmar Hopp Foundation and DKFZ.

To verify this hypothesis, Melania Tesio, a coworker in Trumpp’s laboratory, bred mice in whose cells the scientists could “switch off” the production of PTEN in blood stem cells and their descendants. Animals whose PTEN production had been turned off developed enlarged spleens and showed signs of a precancerous phase of leukemia known as myeloproliferative syndrome. Ultimately they developed various types of blood cancer.

The researchers were surprised, however, to find that cell division in the blood stem cells was not increased, as they had expected. Instead, they discovered that levels of a cellular messenger called G-CSF (granulocyte colony-stimulating factor) were much higher than normal. This messenger, which is also produced in small amounts in the granulocytes of normal animals, is known to “mobilize” blood stem cells; they leave the bone marrow and migrate through the body. This is exactly what happened in PTEN-negative animals: Blood stem cells leave the bone marrow and settle in the spleen.

Is the excessive production of G-CSF really responsible for the migration of blood stem cells into the spleen? The DKFZ researchers examined this in experiments with mice whose cells are unable to produce both PTEN and G-CSF. In these animals, blood stem cells remained in the bone marrow, and the animals did not develop myeloproliferative syndrome.

“This proves that the overproduction of G-CSF in PTEN-mutated granulocyte cells is what causes blood stem cells to migrate,” says Andreas Trumpp. “G-CSF not only mobilizes stem cells, but also has an effect on the granulocyte cells themselves by inducing them to divide. This double effect on stem cells and granulocytes sets off the progression toward leukemia. The disease therefore develops along an indirect path, rather than by a defect in the PTEN tumor suppressor that drives stem cells to multiply, as previously assumed.”

Melania Tesio, Gabriela M. Oser, Irène Baccelli, William Blanco-Bose, Hong Wu, Joachim R. Göthert, Scott C. Kogan, and Andreas Trumpp: Pten loss in the bone marrow leads to G-CSF–mediated HSC mobilization. Journal of Experimental Medicine 2013, DOI: doi:10.1084/jem.20122768

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.


Subscribe to our RSS-Feed.

to top
powered by webEdition CMS