Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .


Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

Growth Without Cell Division: Heidelberg Researchers Describe Alternative Cell Cycle

No. 57 | 31/10/2011 | by Sel

When animals or humans grow, this is normally accomplished by many successive cell divisions. In plants and also in many simple animals, there is an alternative growth strategy: Cells double their genetic material and their other components and, thus, also their size without subsequently dividing into two daughter cells. Several such “endocycles” generate giant cells which can grow up to one thousand times the size of a normal cell. Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and Heidelberg University have now found out how endocycles are controlled. Today they have reported their results in Nature.
Joint Press Release by Heidelberg University and German Cancer Research Center in the Helmholtz Association

Microscopic image of a salivary gland

Endocycles are very common in nature: They fuel growth in many invertebrates such as mollusks, insects or crustaceans and also in plants. Endocycles are responsible for generating up to half of Earth’s biomass. Promoting or suppressing endocycles from outside might have important economic implications. Thus, just one extra endocycle in the cells of a crop plant would double the agricultural yield from that crop, while one endocycle less in an insect pest could make it controllable. Nevertheless, this type of cell cycle has been little investigated up to now and, unlike cell division, or mitosis, has not been completely understood.

The team of Bruce Edgar, who leads a joint department of DKFZ and the Center for Molecular Biology of Heidelberg University (ZMBH) in an alliance of the two institutes, has now found out that the mechanics behind this cell cycle are very similar to those of mitosis. In both processes, a cycle of production and destruction of particular proteins is responsible for DNA replication and, thus, replication of all other cellular components, being initiated at regular intervals and stopped again after its completion.

“We have found out that the two factors E2F and CRL4 play an important role in this process,” said first author Norman Zielke. “E2F starts the endocycle and is subsequently destroyed by CRL4. Then CRL4 becomes inactive and E2F can slowly accumulate again. When its concentration is high enough, the cycle repeats itself.” The scientists also found that the faster the E2F concentration reaches its threshold, the faster the next cycle starts and the faster the cell grows. The function of E2F is similar to the function of mitotic cyclins, which regulate cell division (mitosis).

“A number of studies have shown that the E2F and CRL4 proteins also play a role in normal cell division (mitosis),” said Edgar, pointing to the medical relevance of their findings. “Any defects in this process result in severe DNA damage and we therefore suspect that these two factors also play a role in the development of cancer.”

For their research, the investigators used the fruit fly, Drosophila. The cells in its saliva glands endoreplicate about 10 times and, thus, grow 1,000-fold their initial size. Humans, too, have several cells that endocycle: heart muscle cells; certain types of blood cells; megakaryocytes, which – as their name suggests – are very large; and the cells in the placenta that feed the embryo. Bruce Edgar and colleagues now aim to find out whether endocycling in these cells is also controlled by the two proteins, E2F and CRL4.

Norman Zielke, Kerry J. Kim, Vuong Tran, Shusaku T. Shibutani, Maria-Jose Bravo, Sabarish Nagarajan, Monique van Straaten, Brigitte Woods, George von Dassow, Carmen Rottig, Christian F. Lehner, Savraj Grewal, Robert J. Duronio, and Bruce A. Edgar: Control of Drosophila endocycles by E2F and CRL4Cdt2, DOI 10.1038/nature10579.

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.


Subscribe to our RSS-Feed.

to top
powered by webEdition CMS