Strategic Communication and Public Relations

Suggesting genes’ friends, facebook-style: New method reveals genes’ combined effects

No. 13 | 07/03/2011 | by (Sel)

Scientists at the European Molecular Biology Laboratory (EMBL) and the German Cancer Research Centre (DKFZ), both in Heidelberg, Germany, have developed a new method that uncovers the combined effects of genes. Published online today in Nature Methods, it helps understand how different genes can amplify, cancel out or mask each others’ effects, and enables scientists to suggest genes that interfere with each other in much the same manner that facebook suggests friends.

By silencing genes two at a time in cells like these, the scientists can analyse the genes’ combined effects. In this microscopy image of human cells, nuclei are shown in red, cell membranes in green, and the cellular scaffolding in blue.
© dkfz.de

To understand the connections between genetic make-up and traits like disease susceptibility, scientists have been turning to genome-wide association studies, in which they compare genetic variants of people with a particular disease to those of healthy people. Such studies have linked many genes to diseases, but these links were often weak and not clear-cut, possibly because individual genes often do not act alone. The effects of a particular gene can depend on what other genes a person carries, and the new method developed by the teams of Wolfgang Huber at EMBL and Michael Boutros at DKFZ enables scientists to uncover and measure those combined effects.

The scientists took a set of genes that are important for cell signalling and, using a technique called RNA interference, silenced those genes two at a time, and compared the effect to what happens when you silence only one or the other member of each pair. In so doing, they were able to identify a new component in a cell-signalling process known as the Ras pathway, which is involved in cellular proliferation, and is known to go awry in tumour cells.

If two people have many friends in common on facebook, the odds are that those two people know each other – even if they themselves are not facebook friends. Similarly, genes that have similar genetic interaction profiles are likely to influence each other’s effects, and Huber, Boutros and colleagues can now suggest such ‘friends’ – i.e. genes that are likely to affect the same cellular processes. In the long run, this could help predict patient outcomes and adapt treatments for diseases such as cancer.

This project was supported by the CellNetworks Cluster, a novel institution at Heidelberg University supported by the Excellence Initiative (www.cellnetworks.uni-hd.de).

Source Article
Horn, T., Sandmann, T., Fischer, B., Axelsson, E., Huber, W. & Boutros, M. Mapping of Signalling Networks through Synthetic Genetic Interaction Analysis by RNAi. Nature Methods, Advance Online Publication 6 March 2011. DOI: 10.1038/nmeth.1581.

A picture for this press release is available at:
http://www.dkfz.de/de/presse/pressemitteilungen/2011/images/bild_pm_13.jpg
Picture caption: By silencing genes two at a time in cells like these, the scientists can analyse the genes’ combined effects. In this microscopy image of human cells, nuclei are shown in red, cell membranes in green, and the cellular scaffolding in blue.

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 3,000 employees is the largest biomedical research institution in Germany. More than 1,300 scientists at the DKFZ investigate how cancer develops, identify cancer risk factors and search for new strategies to prevent people from developing cancer. They are developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to all questions on cancer.

Jointly with partners from the university hospitals, the DKFZ operates the National Center for Tumor Diseases (NCT) in Heidelberg and Dresden, and the Hopp Children's Tumour Center KiTZ in Heidelberg. In the German Consortium for Translational Cancer Research (DKTK), one of the six German Centers for Health Research, the DKFZ maintains translational centers at seven university partner locations. NCT and DKTK sites combine excellent university medicine with the high-profile research of the DKFZ. They contribute to the endeavor of transferring promising approaches from cancer research to the clinic and thus improving the chances of cancer patients.

The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS