Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Fertile? Not Without the Brain

Sophisticated Network of Neurons Promotes Ovulation

No. 89 | 19/10/2006 | by (KR)

There are many causes of infertility. The fact that nerve cells can also play a role is little known. The hormone estrogen regulates the activity of neurons that give the starting signal for ovulation. Collaborating with international research groups, scientists at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have studied this signaling pathway in detail and have discovered new causes of infertility.

The time of a woman’s monthly ovulation depends on how far the egg is matured and on the brain being informed about this. Estrogen, a hormone produced in the ovaries, transmits this message to the brain around the 14th day of the fertility cycle. In response, the stimulated neurons trigger increased release of another hormone called gonadotropin from the pituitary gland and, thus, give the signal for ovulation. “The better we understand how estrogens work and what may go wrong in the interaction with neurons, the more possibilities we will have to counteract infertility,” says Professor Günther Schütz, head of the Division of Molecular Biology of the Cell I at the German Cancer Research Center. Schütz and his co-workers, collaborating with Professor Allan Herbison in New Zealand and two research groups in the U.S., demonstrated that only a specific group of neurons in the brain receive the hormone signal. These cells need to have the estrogen receptor alpha in order to recognize the message and subsequently trigger production of the necessary sex hormones.

Estrogen receptors are specialized on perceiving the estrogen hormone. Two types of estrogen receptors, alpha and beta, are found in the nervous system. It has been known that female animals suffer from lesions in the ovaries, mammary glands and uterus when they lack the estrogen receptor alpha. “Every single one of these defects is sufficient to make the animals infertile,” says biochemist Dr. Tim Wintermantel. Moreover, there were indications suggesting that estrogen receptor beta is also relevant for fertility. The scientists performed several experiments to find out more about the role played by the two estrogen receptors in the activation of neurons in the brain.

They studied mice who lacked the estrogen receptor alpha only in nerve cells. Additional estrogen given to these animals failed to trigger the hormone signal for ovulation. Furthermore, the investigators administered synthetic molecules developed and provided by Schering AG, Berlin, to healthy female mice. These substances activated exclusively the estrogen receptor alpha. This alone was sufficient to increase hormone production substantially. "Both experiments led to corresponding results," explains Tim Wintermantel. "The estrogen receptor alpha needs to be not only present but also activated."

Nevertheless, a gap in the researchers’ model became apparent: The neurons that are critical for the release of the messenger substance gonadotropin do not have the estrogen receptor alpha. How do the gonadotropin producers receive the signal to increase hormone release if they are unable to receive the estrogen message? The researchers discovered that a second group of neurons in the hypothalamus transmits the message. They demonstrated that these mediators are equipped with the alpha antenna and that they use long cellular extensions to connect with the cells that induce gonadotropin production in the pituitary gland.

Günther Schütz is convinced that this regulatory cycle is not the only one that estrogen uses to control the activity of neurons. “This could be important, for example, for patients who lack a specific receptor on the gonadotropin producing cells and who are infertile because of this,” he says. Therefore, the medical researcher plans to investigate further signaling pathways of estrogen in the brain with his co-workers in future.

Tim M. Wintermantel, Rebecca E. Campbell, Robert Porteous, Dagmar Bock, Hermann-Josef Gröne, Martin G. Todmann, Kenneth S. Korach, Erich Greiner, Cristian A. Pérez, Günther Schütz and Allan E. Herbison: Definition of Estrogen Receptor Pathway Critical for Estrogen Positive Feedback to Gonadotropin-Releasing Hormone (GnRH) Neurons and Fertility, Neuron (2006), doi: 10.1016/j.neuron.2006.07.023

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS