Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

GENOMICS AND CANCER 2006 - Conference Report III

Cancer and Infections - Are There Common Mechanisms?

No. 76 | 15/09/2006 | by (Koh)

Researchers in Italy have demonstrated how Helicobacter pylori triggers the first step of cancer development in cells of the gastric mucosa. Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) are investigating a key molecule in the development of cancer, infection and inflammation.

The bacterium Helicobacter pylori is responsible for the development of stomach ulcers and also of stomach cancer. Dr. Fabio Bagnoli of Novartis Vaccines, Siena, Italy, is studying the mechanisms how Helicobacter causes the cells of the gastric mucosa to transform. Helicobacter is equipped with special enzymes that enable it to survive the acid attacks by the stomach. Like a number of other bacterial pathogens, Helicobacter injects a protein into the epithelial cells of the gastric mucosa. While this injection is used by other pathogens to get access into the cell, Helicobacter’s protein, called CagA, causes a whole range of dramatic changes in the cell biology, as the Siena research group has found out.

Like all epithelial cells, those of the gastric mucosa have two sides with different functions: One faces outward, into the organ lumen, the other is in contact with the blood supply of the tissue. Between the two poles, the cell walls form a tight barrier via close contacts. Helicobacter dramatically disrupts this order. Following CagA injection, epithelial cells lose their polarity, the contact sites break apart. The cells form tiny foot-like extensions that make them mobile and start breaking through the basal membrane that separates them from the blood vessels. CagA causes similar changes in a cell like some cancer genes do. The Italian scientists presume that CagA thus triggers the first step in the development of gastric cancer.

Assistant Professor Dr. Jan Mollenhauer, Division of Molecular Genome Analysis at the DKFZ, believes that a molecule called DMBT1 plays a key role in cancer development, infection and inflammation. The gene coding for DMBT1 first attracted attention by its absence: Mollenhauer discovered that the genetic information for DMBT 1 is missing in cells of malignant brain tumors. Meanwhile it is known that the DMBT1 gene is completely or partly lost in 84 percent of tumors that originate from epithelial cells.

Numerous results also indicate that DMBT1 plays a role in infection defense. Thus, the protein binds and clots viruses and bacteria, which presumably causes them to lose their infectiousness. In addition, DMBT1 attracts immune cells to the infection site.

Mollenhauer’s recent results show that DMBT1 is also involved in inflammatory processes. He reports that cells of the intestinal mucosa increase their DMBT1 production as a response to inflammatory stimuli. In cells of the inflamed intestinal mucosa of patients with Crohn’s disease, NOD2, a protein that is a key sensor of the cell for bacterial infections, gives the signal for a strong increase of DMBT1 production.

Mollenhauer concludes from the individual results that complex diseases such as cancer, infection and inflammation, have common underlying molecular mechanisms in which key molecules such as NOD2 and DMBT1 and several others are involved. The scientist speculates that such "metaproteins" might serve as central targets for treating a whole range of diseases.

The German Cancer Research Center organizes the GENOMICS AND CANCER 2006 Conference in collaboration with the National Genome Research Network (Nationales Genomforschungsnetz, NGFN), an initiative funded by the Federal Ministry of Education and Research (BMBF).

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS