All Publications

Diagram illustrating the mechanism of action for the drug Rabeprazole. It shows interactions involving a target protein, disulfide bond formation, and the coordination of zinc leading to the formation of a zinc-sulfenate compound. Key stages of chemical reactions are represented.

Site-specific activation of the proton pump inhibitor rabeprazole by tetrathiolate zinc centers

T. Marker, R.R. Steimbach, C. Perez-Borrajero, M. Luzarowski, E. Hartmann, S. Schliech, D. Pastor-Flores, E. Espinet, A. Trumpp, A.A. Teleman, F. Gräter, B. Simon, A.K. Miller*, T.P. Dick* Nat. Chem. 2025, 17, 507–517. (* = co-corresponding authors)

Highlighted in a “News and Views” summary.

Highlighted in an “In the Pipeline” post from Derek Lowe.

Highlighted in Synfacts.

__________________________________________________________________________________________________________________

The image illustrates a biochemical process involving HDAC10, highlighting two states during excitation at 340 nm. It shows FRET interactions causing dye emissions at 665 nm and Eu emissions at 615 nm, with a visual transition indicating reduced dye emission upon binder interaction.

TR-FRET assay for profiling HDAC10 inhibitors and PROTACs

K. Remans, P. Sehr, R.R. Steimbach, N. Gunkel, A.K. Miller Methods in Enzymology, 2025, In Press.

__________________________________________________________________________________________________________________

Differential KEAP1/NRF2 mediated signaling widens the therapeutic window of redox-targeting drugs in SCLC therapy

J. Samarin, H. Nůsková, P. Fabrowski, M. Malz, E. Amtmann, M.J. Taeubert, D. Pastor-Flores, D. Kazdal, R. Kurilov, N. de Vries, H. Pink, F. Deis, J. Hummel-Eisenbeiss, K. Kaushal, T.P. Dick, G. Hamilton, M. Muckenthaler, M. Mall, B. Lim, T. Kanamaru, G. Klinke, M. Sos, J. Frede, A.K. Miller, H. Alborzinia, N. Gunkel. BioRxiv, 2024.

__________________________________________________________________________________________________________________

This image visually summarizes research on 21 KDAC inhibitors, illustrating dose-response curves, an online resource, and key insights on substrate specificity, acetylated lysine sites, and the re-distribution of KATs related to drugs like Panobinostat.

Decrypting lysine deacetylase inhibitor action and protein modifications by dose-resolved proteomics

Y.-C. Chang, C. Gnann, R.R. Steimbach, F.P. Bayer, S. Lechner, A. Sakhteman, M. Abele, J. Zecha, J. Trendel, M. The, E. Lundberg, A.K. Miller, B. Kuster Cell Rep., 2024, 43, 114272.

__________________________________________________________________________________________________________________

Competition for cysteine acylation by C16:0 and C18:0 derived lipids is a global phenomenon in the proteome

H. Nůsková, F. Garcia-Cortizo, L.S. Schwenker, T. Sachsenheimer, E. Diakonov, M. Tiebe, M. Schneider, J. Lohbeck, C. Reid, A. Kopp-Schneider, D. Helm, B. Brügger, A.K. Miller, A. A. Teleman J. Biol. Chem. 2023, 299, 105088.

__________________________________________________________________________________________________________________

The image illustrates two chemical structures showcasing different compounds with varying antiproliferative activities. One structure indicates poor activity, while the other displays enhanced efficacy against HDACs, highlighting alterations in the molecular design that contribute to these effects. A protein structure is also depicted for context.

Tetrahydro-β-carboline derivatives as potent histone deacetylase 6 inhibitors with broad-spectrum antiproliferative activity

X. Chen, J. Wang, P. Zhao, B. Dang, T. Liang, R.R. Steimbach, A.K. Miller, J. Liu, X. Wang, T. Zhang, X. Luan, J. Hu, J. Gao Eur. J. Med. Chem. 2023, 260, 115776.

__________________________________________________________________________________________________________________

Chemoproteomic target deconvolution reveals histone deacetylases as targets of (R)-lipoic acid

S. Lechner, R.R. Steimbach, L. Wang, M.L. Deline, Y.-C. Chang, T. Fromme, M. Klingenspor, P. Matthias, A.K. Miller, G. Medard, B. Kuster Nat. Comm. 2023, 14, 3548.

__________________________________________________________________________________________________________________

Diagram illustrating the effects of a ROS-inducing drug on lung tissue in non-small cell lung cancer (NSCLC). It shows a comparison between resistant and sensitive NSCLC, with levels of reactive oxygen species (ROS) depicted on a gradient from basal levels to increased ROS in sensitive cases.

Low level of antioxidant capacity biomarkers but not target overexpression predicts vulnerability to ROS-inducing drugs

J. Samarin, P. Fabrowski, R. Kurilov, H. Nuskova, J. Hummel-Eisenbeiss, H. Pink, N. Li, V. Weru, H. Alborzinia, U. Yildiz, L. Grob, M. Taubert, M. Czech, M. Morgen, C. Brandstädter, K. Becker, L. Mao, A.K. Jayavelu, A. Goncalves, U. Uhrig, J. Seiler, Y. Lyu, S. Diederichs, U. Klingmüller, M. Muckenthaler, A. Kopp-Schneider, A. Teleman, A.K. Miller, N. Gunkel Redox Biol. 2023, 62, 102639.

__________________________________________________________________________________________________________________

Important Requirements for Desorption/Ionization Mass Spectrometric Measurements of Temozolomide-Induced 2′-Deoxyguanosine Methylations in DNA

M. Fresnais, I. Jung, U.B. Klein, A.K. Miller, S. Turcan, W. E. Haefeli, J. Burhenne and R. Longuespée Cancers 2023, 15, 716.

__________________________________________________________________________________________________________________

A trypanosome-derived immunotherapeutics platform elicits potent high-affinity antibodies, negating the effects of the synthetic opioid fentanyl

G. Triller, E.P. Vlachou, H. Hashemi, M. van Straaten, J. Zeelen, Y. Kelemen, C. Baehr, C.L. Marker, S. Ruf, A. Svirina, S. Kruse, A. Baumann, A.K. Miller, M. Bartel, M. Pravetoni, C.E. Stebbins, F.N. Papavasiliou, J.P. Verdi Cell Rep. 2023, 42, 112049.

__________________________________________________________________________________________________________________

The image illustrates a biochemical pathway involving GSH and its role in radical-driven lipid oxidation, culminating in ferroptosis. Key components include Cys, GSH, and the conversion of lipid substrates (LH) leading to lipid hydroperoxide (LOOH) formation and the triggering of ferroptosis.

Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals

U. Barayeu, D. Schilling, M. Eid, T. N. X. da Silva, L. Schlicker, N. Mitreska, C. Zapp, F. Gräter, A. K. Miller, R. Kappl, A. Schulze, J. P. F. Angeli, T. P. Dick Nat. Chem. Biol. 2023, 19, 28–37.

__________________________________________________________________________________________________________________

Illustration depicting the structure and components of KLK6 activity-based probes. Key elements include molecular structures labeled as tags, substrates, and phenotypes, along with a graph representing target engagement with log and fold-change values. The image conveys the research focus on KLK6's role in biochemistry.

A KLK6 activity-based probe reveals a role for KLK6 activity in pancreatic cancer cell invasion

L. Zhang, S. Lovell, E. De Vita, P.K.A. Jagtap. L. Daniel, G. Goya, S, Kjaer, A. Borg, J. Hennig, A.K. Miller, E.W. Tate J. Am. Chem. Soc. 2022, 144, 22493–22504.

__________________________________________________________________________________________________________________

An illustration depicting chemical structures related to SAHA, an HDAC pan inhibitor, and its selective derivative, DKZF-748. Key information includes the inhibition of spermine deacetylation, lack of off-target hyperacetylation, and optimization of 33 derivatives for HDAC10 specificity.

Aza-SAHA Derivatives are Selective Histone Deacetylase 10 Chemical Probes That Inhibit Polyamine Deacetylation and Phenocopy HDAC10 Knockout

R.R. Steimbach, C.J. Herbst-Gervasoni, S. Lechner, T.M. Stewart, G. Klinke, J. Ridinger, M.N.E. Geraldy, G. Tihanyi, J.R. Foley, U. Uhrig, B. Küster, G. Poschet, R.A. Casero Jr., G. Medard, I. Oehme, D.W. Christianson, N. Gunkel, A.K. Miller J. Am. Chem. Soc. 2022, 144, 18861–18875.

__________________________________________________________________________________________________________________

The image illustrates the development of reversible KLK6 inhibitors targeting viral and cancer proteins. Key features include chemical structures of inhibitors, intermediates, and two X-ray structures of protein-ligand complexes, highlighting improved synthesis methods.

Scalable synthesis and structural characterization of reversible KLK6 inhibitors (Correction)

A. Baumann, D. Isak, J. Lohbeck, P.K.A. Jagtap, J. Hennig, A. K. Miller RSC Advances 2022, 12, 26989–26993.

__________________________________________________________________________________________________________________

Histone deacetylase 10 liberates spermidine to support polyamine homeostasis and tumor cell growth

T. M. Stewart, J. R. Foley, C. E. Holbert, G. Klinke, G. Poschet, R. R. Steimbach, A. K. Miller , R. A. Casero Jr J. Biol. Chem. 2022, 298, 102407.

__________________________________________________________________________________________________________________

Chemical diagram depicting the synthesis of emeriones. On the left, a starting compound includes a stannyl group. On the right, structures of emerione A, B, and two proposed structures of emerione C are shown, highlighting variations in molecular arrangement and substituents.

Bioinspired Asymmetric Total Synthesis of Emeriones A–C

S. Jänner*, D. Isak*, Y. Li, K.N. Houk, A.K. Miller Ang. Chem. Int. Ed. 2022, 61, e202205878. (*) = Equal contribution

__________________________________________________________________________________________________________________

The image depicts chemical structures relevant to HDAC10 enzyme assays, featuring Ac-spermidine-AMC, spermidine-AMC, and a selective HDAC10 inhibitor. Key interactions are illustrated with labeled amino acid residues, enhancing understanding of the inhibitory mechanism. This representation aids in the study of drug development targeting HDAC10.

First Fluorescent Acetylspermidine Deacetylation Assay for HDAC10 Identifies Selective Inhibitors with Cellular Target Engagement

D. Herp, J. Ridinger, D. Robaa, S. A. Shinsky, K. Schmidtkunz, T. Z. Yesiloglu, T. Bayer, R.R. Steimbach, C.J. Herbst-Gervasoni, A. Merz, C. Romier, P. Sehr, N. Gunkel, A. K. Miller, D. W. Christianson, I. Oehme, W. Sippl, M. Jung ChemBioChem 2022, 23, e202200180.

__________________________________________________________________________________________________________________

Diagram comparing two alkylating agents: the left side labeled "Unsuitable alkylating agent" shows a chemical reaction that is ineffective, while the right side labeled "Suitable alkylating agent" illustrates a more effective chemical reaction. Both sides feature similar structural elements for clarity.

Commonly Used Alkylating Agents Limit Persulfide Detection by Converting Protein Persulfides into Thioethers

D. Schilling, U. Barayeu, R.R. Steimbach, D. Talwar, A.K. Miller, T. Dick Ang. Chem. Int. Ed. 2022, 61, e202203684.

__________________________________________________________________________________________________________________

Diagram showing three sections: the left features chemical structures related to HDAC affinity; the center displays a colorful matrix indicating various target landscapes and off-targets; the right illustrates the MBLAC2 phenotype with an emphasis on extracellular vesicle accumulation.

Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target

S. Lechner, M.I.P. Malgapo, C. Grätz, R.R. Steimbach...A.K.Miller, M.W. Pfaffl, M.E. Linder, B. Kuster, G. Medard Nat. Chem. Biol. 2022, 18, 812–820.

__________________________________________________________________________________________________________________

Real-world evidence for preventive effects of statins on cancer incidence: A trans-Atlantic analysis

B.-O Gohlke, F. Zincke, A. Eckert, D. Kobelt, S. Preissner, J.M. Liebeskind, N. Gunkel, K. Putzker, J. Lewis, S. Preissner, B. Kortüm, W. Walther, C. Mura, P.E. Bourne, U. Stein, R. Preissner Clin. Transl. Med. 2022, 12, e726.

__________________________________________________________________________________________________________________

Consitutional PIGA mutations cause a novel subtype of hemochromatosis in patients with neurologic dysfunction

L. Muckenthaler, O. Marques, S. Colucci, J. Kunz, P. Fabrowski, T. Bast, S. Altamura, B. Höchsmann, H. Schrezenmeier, M. Langlotz, P. Richter-Pechanska, T. Rausch, N. Hofmeister-Mielke, N. Gunkel, M.W. Hentze, A.E. Kulozik, M.U. Muckenthaler Blood 2022, 139, 1418–1422.

__________________________________________________________________________________________________________________

The diagram compares two conditions: Klk6(-/-) on the left and Klk6(+/+) on the right. It illustrates the mechanisms of myelin gene transcription, indicating that in Klk6(-/-), myelin formation is active, while in Klk6(+/+), myelin formation is inhibited.

Blocking Kallikrein 6 promotes developmental myelination

H.Yoon, E.M. Triplet, W.L. Simon, C.-I. Choi, L.S. Kleppe, E. De Vita, A.K. Miller, I.A. Scarisbrick Glia 2022, 70, 430–450.

__________________________________________________________________________________________________________________

An illustration depicting a chemical structure transition, highlighting the capture volume with a hand reaching towards a target protein. Text is included questioning if the rate of nitrogen inversion affects binding. This image relates to research on chemical interactions.

Can an Intermediate Rate of Nitrogen Inversion Affect Drug Efficacy?

R.R. Steimbach, G. Tihanyi, M. Géraldy, A. Wzorek, A.K. Miller, K.D. Klika Symmetry 2021, 13, 1753.

__________________________________________________________________________________________________________________

Evaluating Invasive Marbled Crayfish as a Potential Livestock for Sustainable Aquaculture

S. Tönges, K. Masagounder, F. Lenich, J. Gutekunst, M. Tönges, J. Lohbeck, A.K.Miller, F. Böhl, F. Lyko Front. Ecol. Evol. 2021, 9, 651981.

__________________________________________________________________________________________________________________

Stearic acid blunts growth-factor signaling via oleoylation of GNAI proteins

H. Nůsková, M.V. Serebryakova, A. Ferrer-Caelles, T. Sachsenheimer, C. Lüchtenborg, A.K. Miller, B. Bruegger, L.V. Kordyukova, A.A. Teleman Nat. Comm. 2021, 12, 4590.

__________________________________________________________________________________________________________________

The image illustrates a scientific concept of drug repurposing, featuring chemical structures and a host-guest inclusion complex with β-cyclodextrin. It highlights interactions and pathways leading to reactive oxygen species (ROS). The right section displays a molecular model relevant to the discussed compounds.

Inclusion Complexes of Gold(I)-Dithiocarbamates with β-Cyclodextrin: A Journey from Drug Repurposing towards Drug Discovery

M. Morgen, P. Fabrowki, E. Amtmann, N. Gunkel, A.K. Miller Chem. Eur. J. 2021, 27, 12156–12165.

__________________________________________________________________________________________________________________

A chemical reaction diagram illustrating a multi-step synthetic pathway. It features reactants, products, and catalysts used, along with conditions such as temperature and solvents. Key transformations include the coupling of molecules, showcasing an organic synthesis process.

Preparation of 1-Benzyl-7-methylene-1,5,6,7-tetrahydro-4H-benzo[d]imidazol-4-one

M. Morgen, J. Lohbeck, A. K. Miller OrgSyn 2021, 98, 315–342.

__________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________

The image illustrates a molecular structure, showcasing a complex between a protein and a ligand. The protein surface is depicted in shades of red and gray, while the ligand is represented by multicolored spheres, highlighting its interaction within the protein's active site.

Structural Basis for the Selective Inhibition of HDAC10, the Cytosolic Polyamine Deacetylase

C. J. Herbst-Gervasoni, R. R. Steimbach, M. Morgen, A. K. Miller, D. W. Christianson ACS Chem. Biol. 2020, 15, 2154–2163.

__________________________________________________________________________________________________________________

The image illustrates key concepts in organic chemistry related to self-induced diastereomeric anischronism (SIDA). It includes molecular structures, NMR spectra comparing (S)-2 and (R)-2, a diagram of a scalemic sample in dynamic equilibrium, and a process for self-disproportionation of enantiomers.

Potentially Mistaking Enantiomers for Different Compounds Due to the Self-Induced Diastereomeric Anisochronism (SIDA) Phenomenon

A. Baumann, A. Wzorek, V. A. Soloshonok, K. D. Klika, A. K. Miller Symmetry 2020, 12, 1106.

__________________________________________________________________________________________________________________

The image illustrates the structures of three HDAC inhibitors: PCI-34051 (selective for HDAC8), a hybrid HDAC6/8/10 inhibitor, and Tubastatin A (selective for HDAC6/10). Key features include linkers and cap groups specific to each compound, highlighting their chemical differences.

Design and Synthesis of Dihydroxamic Acids as HDAC6/8/10 Inhibitors

M. Morgen, R. R. Steimbach, M. Géraldy, L. Hellweg, P. Sehr, J. Ridinger, O. Witt , I. Oehme, C. J. Herbst‐Gervasoni, J. D. Osko, N. J. Porter, D. W. Christianson, N. Gunkel, A. K. Miller ChemMedChem 2020, 15, 1163–1174.

__________________________________________________________________________________________________________________

The image illustrates a chemical structure related to a compound (21b) with a DKP scaffold, featuring a cap, linker, and ZBG. It highlights the compound's potency (IC₅₀ = 0.73 nM) and selectivity range (144–10941-fold) against HDAC6. The right side shows additional molecular details.

Novel 2, 5-Diketopiperazine Derivatives as Potent Selective Histone Deacetylase 6 Inhibitors: Rational Design, Synthesis and Antiproliferative Activity

X. Chen, X. Chen, R.R. Steimbach, T. Wu, H. Li, W. Dan, P. Shi, C. Cao, D. Li, A.K. Miller, J. Gao, Y. Zhu Eur. J. Med. Chem. 2020, 187, 111950.

__________________________________________________________________________________________________________________

The image presents three sections: ELF screening data showing various research metrics; a docking visual indicating molecular interactions; and a chemical structure diagram labeled 'Nanomolar lead' with specific atoms and bonds highlighted. These elements collectively summarize experimental findings in a scientific context.

Synthesis and Structure–Activity Relationships of N-(4-Benzamidino)-Oxazolidinones–Potent and Selective Inhibitors of Kallikrein-Related Peptidase 6

E. De Vita, N. Smits, H. van den Hurk, E.M. Beck, J. Hewitt, G. Baillie, E. Russell, A. Pannifer, V. Hamon, A. Morrison, S.P. McElroy, P. Jones, N.A. Ignatenko, N. Gunkel, A.K. Miller ChemMedChem 2020, 15, 79–95.

__________________________________________________________________________________________________________________

The image depicts the molecular structure of Tubastatin A and its effects on HDAC Class IIB enzymes. It highlights selectivity towards HDAC10 and HDAC6, showing varying fold changes in activity, with specific interactions noted at Glu272 of HDAC10.

Selective Inhibition of Histone Deacetylase 10: Hydrogen Bonding to the Gatekeeper Residue is Implicated

M. Geraldy, M. Morgen, P. Sehr, R.R. Steimbach, J. Ridinger, I. Oehme, O. Witt, M. Malz, M.S. Nogueira, O. Koch, N. Gunkel, A.K. Miller J. Med. Chem. 2019, 62, 4426–4443.

__________________________________________________________________________________________________________________

Illustration summarizing research on Kallikrein-related peptidase 6 (KLK6). It features graphics representing covalent modeling, DKFZ-633 for labeling, a long acyl-enzyme, and phenotypic changes, linked by arrows to a central structure (DKFZ-251), emphasizing the enzyme's role in biochemical processes.

Depsipeptides featuring a neutral P1 are potent inhibitors of kallikrein-related peptidase 6 with on-target cellular activity

E. De Vita, P. Schüler, S. Lovell, J. Lohbeck, S. Kullmann, E. Rabinovich, A. Sananes, B. Heßling, V. Hamon, N. Papo, J. Heß, E.W. Tate, N. Gunkel, A.K. Miller J. Med. Chem. 2018, 61, 8859–8874.

__________________________________________________________________________________________________________________

The HDAC6/8/10 inhibitor TH34 indu ces DNA damage-mediated cell death in human high-grade neuroblastoma cell lines

F.R. Kolbinger, E. Koeneke, J. Ridinger, T. Heimburg, T. Bayer, W. Sippl, M. Jung, N. Gunkel, A.K. Miller, O. Witt, I. Oehme Archives of Toxicology 2018, 92, 2649–2664.

__________________________________________________________________________________________________________________

Dual role of HDAC10 in lysosomal exocytosis and DNA repair promotes neuroblastoma chemoresistance

J. Ridinger, E. Koeneke, F.R. Kolbinger, K. Koerholz, S. Mahboobi, N. Gunkel, A.K. Miller, H. Peterziel, A. Hamacher-Brady, O. Witt, I. Oehme Sci. Rep. 2018, 8, 10039.

__________________________________________________________________________________________________________________

A potent, proteolysis-resistant inhibitor of kallikrein-related peptidase 6 (KLK6) for cancer therapy, developed by combinatorial engineering

A. Sananes, I. Cohen, A. Shahar, A. Hockla, E. De Vita, A.K. Miller, E. Radisky, N. Papo J. Biol. Chem. 2018, 293, 12663–12680.

__________________________________________________________________________________________________________________

Rapid detection of 2-hydroxyglutarate in frozen sections of IDH mutant tumors by MALDI-TOF mass spectrometry

R. Longuespée, A.K. Wefers, E. De Vita, A.K. Miller, D.E. Reuss, W. Wick, C. Herold-Mende, M. Kriegsmann, P. Schirmacher, A. von Deimling, S. Pusch Acta Neuropathol. Commun. 2018, 6, 21.

__________________________________________________________________________________________________________________

A diagram illustrating the factors contributing to type 2 diabetes-like phenotypes. The central focus is on elevated methylglyoxal, surrounded by arrows indicating high glucose flux, obesity-induced glyceroneogenesis, impaired detoxification, elevated FASN activity, obesity, insulin resistance, and hyperglycemia.

Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes

A. Moraru, J. Wiederstein, D. Pfaff, T. Fleming, A.K. Miller, P. Nawroth, A.A. Teleman Cell Metab. 2018, 27, 926–934.

__________________________________________________________________________________________________________________

Parametric modeling and optimal experimental designs for estimating isobolograms for drug interactions in toxicology

T. Holland-Letz, N. Gunkel, E. Amtmann, A. Kopp-Schneider J. Biopharm. Stat. 2018, 28, 763–777.

__________________________________________________________________________________________________________________

Drug Innovation in Academia: A Helmholtz Drug Research Initiative Conference

A.K. Miller, M. Brönstrup ChemMedChem 2017, 12, 1652–1654.

__________________________________________________________________________________________________________________

A chemical synthesis diagram showing a transformation from a starting compound with a nitro group to a final product suitable for PROTAC applications. The process involves five steps with a 20% yield. Key points include "Easily scalable" and "Ideal PROTAC building block."

Practical synthesis of a phthalimide-based Cereblon ligand to enable PROTAC development

J. Lohbeck, A.K. Miller Bioorg. Med. Chem. Lett. 2016, 26, 5260–5262.

__________________________________________________________________________________________________________________

The image depicts a chemical synthesis process involving fumagillin. It shows two structures: the original fumagillin and a drug-like fumagillin analog, connected by the enzyme MetAP2. Steps for the process include redesigning and synthesizing the analog.

Spiroepoxytriazoles Are Fumagillin-like Irreversible Inhibitors of MetAP2 with Potent Cellular Activity

M. Morgen, C. Jöst, M. Malz, R. Janowski, D. Niessing, C.D. Klein, N. Gunkel, A.K. Miller ACS Chem. Biol. 2016, 11, 1001–1011.

__________________________________________________________________________________________________________________

Impaired aldehyde dehydrogenase 1 subfamily member 2A-dependent retinoic acid signaling is related with a mesenchymal-like phenotype and an unfavorable prognosis of head and neck squamous cell carcinoma

K. Seidensaal, A. Nollert, A.H. Feige, M. Muller, T. Fleming, N. Gunkel, K. Zaoui, N.Grabe, W. Weichert, K.J. Weber, P. Plinkert, C. Simon, J. Hess Mol Cancer 2015, 14, 204.

__________________________________________________________________________________________________________________

Regulation of mitochondrial morphology and function by stearoylation of TFR1

D. Senyilmaz, S. Virtue, X. Xu, C.Y. Tan, J.L. Griffin, A.K. Miller, A. Vidal-Puig, A.A. Teleman Nature 2015, 525, 124–128.

__________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________

D-2-Hydroxyglutarate producing neo-enzymatic activity inversely correlates with frequency of the type of isocitrate dehydrogenase 1 mutations found in glioma

S. Pusch, L. Schweizer, A.C. Beck, J.M. Lehmler, S. Weissert, J. Balss, A.K. Miller, A. von Deimling Acta Neuropathol. Commun. 2014, 2, 19.

__________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________

Catalysis in the Total Synthesis of Bryostatin 16

A.K. Miller Angew. Chem. Int. Ed. 2009, 48, 3221–3223.

Supervised Publications

Total Synthesis of (–​)​-​Heptemerone B and (–)​-​Guanacastepene E

A.K. Miller, C.C. Hughes, J.J. Kennedy-Smith, S.N. Gradl, D. Trauner J. Am. Chem. Soc. 2006, 128, 17057-17062.

Mapping the Chemistry of Highly Unsaturated Pyrone Polyketides

A.K. Miller, D. Trauner Synlett 2006, 14, 2295–2316.

An Electrochemical Approach to the Guanacastepenes

C.C. Hughes, A.K. Miller, D. Trauner Org. Lett. 2005, 7, 3425–3428.

Biomimetic Synthesis of Elysiapyrones A and B

J. Barbarow, A.K. Miller, D. Trauner Org. Lett. 2005, 7, 2901–2903.

Stereoselective Synthesis of Cyercene A and the Placidenes

G. Liang, A.K. Miller, D. Trauner Org. Lett. 2005, 7, 819–821.

The Total Synthesis of (–)-Crispatene

A.K. Miller, D. Byun, C. Beaudry, D. Trauner Proc. Nat. Acad. Sci. 2004, 101, 12019–12023.

Development of Novel Lewis Acid Catalyzed Cycloisomerizations: Synthesis of Bicyclo[3.1.0]hexenes and Cyclopentenones

A.K. Miller, M.R. Banghart, C. Beaudry, J.M. Suh, D. Trauner Tetrahedron, 2003, 59, 8919–8930.

Total Synthesis of (±)-Photodeoxytridachione Using a Lewis Acid Catalyzed Cyclization

A.K. Miller, D. Trauner Ang. Chem. Int. Ed. 2003, 42, 549–552.

Synthesis of Arylpiperazines via Palladium Catalyzed Aromatic Amination Reactions with Unprotected Piperazines

S.-H. Zhao, A.K. Miller, J. Berger, L.A. Flippin Tetrahedron Lett. 1996, 37, 4463–4466.

Form

Form data is loaded ...