Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

Krebstherapie: Schaltplan der Gene zeigt die besten Angriffspunkte

Nr. 25c2 | 18.04.2018 | von Eck

Die meisten Gene sind Teamplayer. Nur im Zusammenspiel mit anderen Genen bringen sie die volle Leistung. Wissenschaftler aus dem Deutschen Krebsforschungszentrum haben eine Möglichkeit gefunden, dies für die Entwicklung neuer Krebstherapien auszunutzen. Sie erstellen Schaltpläne der genetischen Abhängigkeiten in Krebszellen. Auf diesen Plänen lässt sich dann ablesen, an welchen Stellen sich das Zusammenspiel der Krebsgene am wirkungsvollsten stören lässt.

© Benedikt Rauscher/DKFZ

Das Erbgut von Krebszellen enthält zahlreiche Mutationen, die sich in gesunden Körperzellen nicht finden. Die veränderten Gene ermöglichen dem Krebs zu wachsen und sich auszubreiten. Da die Erkrankung auf diese Veränderungen angewiesen ist, sind die betroffenen Gene, bzw. die von ihnen abgelesenen Proteine, interessante Angriffspunkte für neue Therapien. Und da Krebszellen auf einen solchen Angriff weitaus empfindlicher reagieren als gesunde Zellen, könnten solche Therapien gezielt nur die mutierten Zellen töten, ohne den gesunden Zellen zu schaden.

Doch in der Vergangenheit zeigte sich: „Gegen Therapien, die nur an einem einzigen Gen – bzw. nur an einem einzigen Genprodukt – ansetzen, entwickeln Krebszellen oft Resistenzen. Es gelingt ihnen häufig, den Effekt der Therapie zu umgehen und andere Wege zu finden", berichtet Michael Boutros vom Deutschen Krebsforschungszentrum (DKFZ). „Außerdem lässt sich manchmal ausgerechnet ein für die Therapie interessantes Krebsgen nur schwer oder gar nicht angreifen", ergänzt Boutros' Kollege Benedikt Rauscher. Die Lösung für diese Probleme liegt im Zusammenspiel der Gene: „Die meisten Gene wirken nicht alleine, sondern in Netzwerken mit vielen anderen Genen. Sie verstärken sich gegenseitig in ihrer Wirkung, schwächen sich ab oder neutralisieren sich ganz", so Michael Boutros. Eine Therapie, die nicht nur ein bestimmtes Krebsgen angreift, sondern in ganze Netzwerke eingreift, können die Krebszellen nicht so leicht umgehen.

Um die Netzwerke der Gene zu entschlüsseln und zu zeigen, welche Gene miteinander verbunden sind, hat das Team um Boutros einen neuen Computeralgorithmus entwickelt. Mit ihm können die Forscher exakte Schaltpläne der genetischen Verbindungen in menschlichen Krebszellen erstellen – und so mögliche Angriffsziele für eine Therapie aufzeigen. Das Besondere dabei: „Mit unserem Algorithmus konnten wir Daten zusammenführen, die an vielen verschiedenen Orten auf der ganzen Welt erzeugt wurden", so Benedikt Rauscher. „Je mehr Daten wir zusammenbringen, desto genauer werden unsere Schaltpläne der genetischen Wechselwirkungen." Der erste Schaltplan der Heidelberger Wissenschaftler basiert auf 85 Hochdurchsatz-Screenings, die von Laboren auf der ganzen Welt in vielen verschiedenen Krebszelllinien durchgeführt wurden. Dabei kam die Genschere CRISPR/Cas9 zum Einsatz, die Erbgut gezielt schneiden und verändern kann. Mit dieser gentechnischen Methode schalteten die Wissenschaftler jedes Gen in den Krebszellen eines nach dem anderen aus und beobachteten, wie die anderen Gene darauf reagierten.

Boutros und seine Kollegen fanden in diesem großen Datensatz bekannte Verbindungen, aber auch neue Abhängigkeiten zwischen Genen, die wichtig sind für die Entstehung von Krebs. „Außerdem stellten wir fest, dass wir mit unseren Schaltplänen auch Moleküle identifizieren können, die eine wichtige Rolle bei bestimmten Krebsarten spielen", berichtet Boutros. In der aktuellen Untersuchung entdeckten die Wissenschaftler, dass die beiden Gene GANAB und PRKCSH die Ausschüttung von sogenannten Wnt-Signalen kontrollieren. Diese Signale können benachbarte Krebszellen zum Wachstum anregen – ein Prozess, der vor allem bei Bauchspeicheldrüsen- und Darmkrebs eine wichtige Rolle spielt.

Benedikt Rauscher, Florian Heigwer, Luisa Henkel, Thomas Hielscher, Oksana Voloshanenko und Michael Boutros. Toward an integrated map of genetic interactions in cancer cells.
Mol Syst Biol 2018; DOI: 10.15252/msb.20177656

 

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Beim Krebsinformationsdienst (KID) des DKFZ erhalten Betroffene, Interessierte und Fachkreise individuelle Antworten auf alle Fragen zum Thema Krebs.

Um vielversprechende Ansätze aus der Krebsforschung in die Klinik zu übertragen und so die Chancen von Patientinnen und Patienten zu verbessern, betreibt das DKFZ gemeinsam mit exzellenten Universitätskliniken und Forschungseinrichtungen in ganz Deutschland Translationszentren:

  • Nationales Centrum für Tumorerkrankungen (NCT, 6 Standorte)
  • Deutsches Konsortium für Translationale Krebsforschung (DKTK, 8 Standorte)
  • Hopp-Kindertumorzentrum (KiTZ) Heidelberg
  • Helmholtz-Institut für translationale Onkologie (HI-TRON) Mainz – ein Helmholtz-Institut des DKFZ
  • DKFZ-Hector Krebsinstitut an der Universitätsmedizin Mannheim
  • Nationales Krebspräventionszentrum (gemeinsam mit der Deutschen Krebshilfe)
Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Archiv Pressemitteilungen

Durchsuchen Sie unser Pressemitteilungsarchiv nach einem bestimmten Thema oder Jahr für Jahr.

RSS-Feed auf www.dkfz.de

Sie können unseren RSS-Feed ganz einfach abonnieren - unkompliziert und kostenlos.

RSS-Feed
nach oben
powered by webEdition CMS