Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

Funktionelle Magnetresonanztechniken verbessern Diagnostik von Hirntumoren

Nr. 70 | 30.08.2006 | von (Koh)

Bildgebende Verfahren liefern den Ärzten immer präzisere Aufnahmen aus dem Körperinneren. Die konventionelle Bildgebung reicht jedoch nicht immer aus, um sichere und exakte Diagnosen zu erstellen. Gerade bei Hirntumoren versagen die gängigen Verfahren häufig: Ob eine Signalveränderung in der Kernspintomographie von einem aggressiven Glioblastom rührt oder die Absiedlung eines möglicherweise noch unentdeckten Tumors ist, lässt sich oft nicht mit Bestimmtheit sagen. Auch entartete Zellen des Lymphsystems siedeln sich gelegentlich im Gehirn an und sind schwer von anderen Tumoren zu unterscheiden. Ebenfalls ungenügend gelingt mit der gängigen Bildgebung die Abgrenzung der aggressiven, höhergradigen von weniger bösartigen, niedergradigen Gliomen.

Gemeinsam mit Kollegen aus den Heidelberger Universitätskliniken haben Radiologen des Deutschen Krebsforschungszentrums geprüft, ob so genannte funktionelle Magnetresonanz (MR)-Techniken eine sicherere Diagnosestellung erlauben als die gängigen bildgebenden Techniken. Funktionelle MR-Methoden stellen bestimmte physiologische Funktionen oder Gewebeparameter bildlich dar. In ihrer neuen Untersuchung verglichen die Ärzte die MR-Spektroskopie, die die Verteilung tumorspezifischer Stoffwechselprodukte innerhalb des Gewebes sichtbar macht, mit verschiedenen Methoden, die die Durchblutung (Perfusion) des Gewebes darstellen.

79 Patienten, bei denen eine CT-Untersuchung den Verdacht auf einen Hirntumor begründet hatte, waren in die Studie einbezogen. Allen Teilnehmern wurden aus den verdächtigen Arealen Gewebeproben entnommen und die Ergebnisse der funktionellen MR-Techniken mit den histologischen Befunden abgeglichen.

Die Studie ergab, dass bei der Diagnose von Hirntumoren die Messung der Durchblutung dem Nachweis tumorspezifischer Stoffwechselprodukte in der Aussagekraft überlegen ist. So lassen sich Glioblastome über ihre stärkere Durchblutung mit großer Sicherheit von den sehr schwach durchbluteten Lymphomen abgrenzen. Um Zellabsiedlungen aus Tumoren anderer Organe von Glioblastomen zu unterscheiden, erwies sich ein Blick auf die Gewebezone direkt um den Tumor als hilfreich: Der Gewebesaum, der Metastasen umgibt, ist deutlich weniger durchblutet als das Areal um Glioblastome. Auch die Differenzialdiagnose von höher- und niedergradigen Gliomen gelingt über die Messung der Gewebeperfusion besser als über die gängige Bildgebung.

"Solche Unterscheidungen sind ausschlaggebend für das weitere therapeutische Vorgehen", erklärt Dr. Marc-André Weber aus der Abteilung Radiologie des Deutschen Krebsforschungszentrums. "Die frühzeitige Einordnung einer Gehirnläsion entscheidet z. B. darüber, ob der Patient vor einer Gewebebiopsie bestimmte Medikamente wie beispielsweise Glukokortikoide einnehmen darf oder nicht oder ob nach der Operation eine weitere Strahlen- oder Chemotherapie sinnvoll ist. Trotzdem können aber die nicht-invasiven MR-Untersuchungen eine Gewebeuntersuchung des Tumors zur Absicherung des Befunds nicht ersetzen."

M. A. Weber, S. Zoubaa, M. Schlieter, E. Jüttler, H.B. Huttner, K. Geletneky, C. Ittrich, M. P. Lichy, A. Kroll, J. Debus, F. L. Giesel, M. Hartmann und M. Essig: Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology, Band 66, Seite 1899, 2006

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Beim Krebsinformationsdienst (KID) des DKFZ erhalten Betroffene, Interessierte und Fachkreise individuelle Antworten auf alle Fragen zum Thema Krebs.

Um vielversprechende Ansätze aus der Krebsforschung in die Klinik zu übertragen und so die Chancen von Patientinnen und Patienten zu verbessern, betreibt das DKFZ gemeinsam mit exzellenten Universitätskliniken und Forschungseinrichtungen in ganz Deutschland Translationszentren:

  • Nationales Centrum für Tumorerkrankungen (NCT, 6 Standorte)
  • Deutsches Konsortium für Translationale Krebsforschung (DKTK, 8 Standorte)
  • Hopp-Kindertumorzentrum (KiTZ) Heidelberg
  • Helmholtz-Institut für translationale Onkologie (HI-TRON) Mainz – ein Helmholtz-Institut des DKFZ
  • DKFZ-Hector Krebsinstitut an der Universitätsmedizin Mannheim
  • Nationales Krebspräventionszentrum (gemeinsam mit der Deutschen Krebshilfe)
Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Archiv Pressemitteilungen

Durchsuchen Sie unser Pressemitteilungsarchiv nach einem bestimmten Thema oder Jahr für Jahr.

RSS-Feed auf www.dkfz.de

Sie können unseren RSS-Feed ganz einfach abonnieren - unkompliziert und kostenlos.

RSS-Feed
nach oben
powered by webEdition CMS