Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Lung Cancer: Molecular Scissors Determine Therapy Effectiveness

No. 14 | 17/03/2009 | by (Koh)

Metastasizing cancer cells use a kind of molecular scissors to cut a trail for the cancer when it invades surrounding tissue. Scientists from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and the University Medical Faculty in Mannheim have now shown that this cutting tool, called u-PAR, might be an indicator of therapy effectiveness in non-small cell lung cancer: The more u-PAR tumor cells produce, the less the anti-cancer drug cetuximab is effective.

In the past few years, a number of anti-cancer drugs have been developed which are directed selectively against specific key molecules of tumor cells. Among these is an antibody called cetuximab, which attaches to a protein molecule that is found in large amounts on the surface of many types of cancer cells. When this surface molecule, called epidermal growth factor receptor, or EGF-R for short, is blocked by cetuximab, the cancer cell receives less signals stimulating cell division.

Clinical studies of non-small cell lung cancer, which is the most frequent type of lung cancer, have shown so far that only part of the patients treated with cetuximab benefit from the treatment. Therefore, doctors are urgently searching for biomarkers which reliably predict responsiveness to the antibody therapy.

Professor Heike Allgayer heads the Department of Experimental Surgery of the Mannheim Medical Faculty of the University of Heidelberg and the Clinical Cooperation Unit “Molecular Oncology of Solid Tumors” at DKFZ. The scientist suspects that the therapeutic antibody can disarm, in particular, individual cancer cells that have detached from the primary tumor, invade other tissues and grow into secondary tumors there. Therefore, Allgayer and her team focused on lung cancer cells’ ability to metastasize. Indeed, the investigators were the first to show in lung cancer cell lines that cetuximab inhibits growth and invasion of cancer cells and reduces the frequency of metastasis.

For invading surrounding healthy tissue, cancer cells needs specific proteins which act like molecular scissors to cut a trail for them. One of these cutting tools is the u-PAR protein which is considered a marker molecule for the invasion ability of cancer cells. Allgayer’s team found out that cancer cells produce less u-PAR after treatment with cetuximab: The antibody appears to block the cell’s u-PAR production.

Allgayer’s team also showed that non-small cell lung cancer is resistant to cetuximab treatment, in particular, when the cancer cells produce large amounts of u-PAR. When the researchers switched off u-PAR production using a genetic trick, the cells responded to cetuximab again.

“Our results show, for the first time, that u-PAR might be an indicator of the effectiveness of cetuximab treatment in non-small cell lung cancer,” Heike Allgayer says. “The more u-PAR the cells produce, the less they are responsive to the drug.” This conclusion is in line with first observations made in lung cancer patients. Tumor cells of patients who did not respond to cetuximab usually produced higher amounts of the molecular scissors u-PAR.

It came as a surprise for Allgayer that EGF-R itself, the target molecule of the drug cetuximab, did not correlate with responsiveness. Further investigations are needed to verify these results. “We want to find possibilities to prescribe the drug only for those patients who can actually benefit from it,” says Allgayer, a doctor and scientist. “Finding suitable biomarkers is one of the most urgent tasks when introducing novel, target-specific therapeutics."

Nikolova DA, Asangani IA, Nelson LD, Hughes DPM, Siwak DR, Mills GB, Harms A, Buchholz E, Pilz LR, Manegold C, Allgayer H: Cetuximab attenuates metastasis and u-PAR expression in non-small cell lung cancer: u-PAR and E-cadherin are novel biomarkers of Cetuximab sensitivity. Cancer Research 2009, DOI: 10.1158/0008-5472.CAN-08-3236

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS