Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

Therapieresistenz von Brustkrebs, Darmkrebs und Krebs der Bauchspeicheldrüse überwinden

Nr. 62 | 18.11.2021 | von Koh

Mit dem Fortschreiten einer Krebserkrankung verändern sich Tumorzellen kontinuierlich, so dass ein Tumor letztendlich aus einer Vielzahl unterschiedlicher Zellklone mit unterschiedlichen Eigenschaften besteht – man spricht von „Tumorheterogenität". Dabei entwickeln die Krebszellen vielfach Resistenz gegen die verfügbaren Therapien. Das interdisziplinäre Forschungsnetzwerk SATURN3* will bei Bauchspeicheldrüsenkrebs, Brustkrebs und Darmkrebs die molekularen Ursachen entschlüsseln, die zur Entstehung von Therapieresistenzen führen. Das Ziel ist, neue Wege zu finden, um Resistenzen vorzubeugen und diese sogar durch effizientere Behandlungen zu überwinden.

Koordiniert wird SATURN3 von Forschenden vom Deutschen Konsortium für translationale Krebsforschung (DKTK), vom Westdeutschen Tumorzentrum (WTZ) des Universitätsklinikums Essen, vom Stammzellinstitut HI-STEM**, vom Deutschen Krebsforschungszentrum (DKFZ) und der Technischen Universität München (TUM). Im Rahmen der Nationalen Dekade gegen Krebs fördert das Bundesministerium für Bildung und Forschung (BMBF) das Vorhaben mit insgesamt über 15 Mio. Euro über fünf Jahre.

Aus einzelnen Tumorzellen können zu verschiedenen Zeitpunkten der Erkrankung in der Kulturschale „Minitumoren“, so genannte Tumororganoide gezüchtet werden. Daran lässt sich die Evolution der Krebszellen beobachten und ihre Reaktion auf Wirkstoffe testen.
© Jackstadt/HI-STEM

Auch Tumoren, die zunächst gut auf eine Behandlung ansprechen, nehmen oft ihr Wachstum wieder auf oder breiten sich sogar über Metastasen im ganzen Körper aus. Die Ursache dafür ist, dass sich Krebszellen beim Fortschreiten der Erkrankung stetig weiterentwickeln. Sie durchlaufen regelrecht eine Evolution, in deren Verlauf sie sich in voneinander abweichende Zellklone differenzieren, die neue biologische Eigenschaften erlangen. „Diese neu erworbenen molekularen Merkmale erlauben den Krebszellen sehr häufig, der Wirkung von zunächst wirksamen Medikamenten zu entkommen. Die Therapieresistenz ist die gefährlichste Begleiterscheinung der Tumorevolution", erklärt Jens Siveke vom Deutschen Konsortium für Translationale Krebsforschung und vom Westdeutschen Tumorzentrum des Universitätsklinikums Essen.

Siveke ist der Koordinator des neuen interdisziplinären Forschungsnetzwerks SATURN3, das den biologischen Hintergründen der Therapieresistenzen auf den Grund gehen will, die als Konsequenz der Heterogenität von Tumorzellen entstehen. Insgesamt 13 Forschungseinrichtungen sind an SATURN3 beteiligt.

Das BMBF hat im Rahmen der Nationalen Dekade gegen Krebs eine neue Förderrichtlinie eingerichtet, die erfolgversprechenden wissenschaftlichen Kooperationsprojekten ermöglichen soll, diese Zusammenhänge zu erforschen und damit zu besseren Behandlungsoptionen für therapieresistente Tumoren beizutragen. SATURN3 wurde nun als eines von zwei Projekten zur Förderung ausgewählt.

„Damit trägt das BMBF zur Klärung einer der großen ungelösten Fragen der Krebsforschung bei", sagt Michael Baumann, Vorstandsvorsitzender des DKFZ und Ko-Vorsitzender im Strategiekreis der Nationalen Dekade gegen Krebs. „Die hochkarätigen Konsortien, die nun ihre Arbeit aufnehmen können, haben gute Aussichten, mit ihren Ergebnissen die Krebsmedizin entscheidend voranzubringen."

Die im Projekt SATURN3 vernetzten Wissenschaftlerinnen und Wissenschaftler konzentrieren sich auf drei Krebsarten, die heute noch sehr schwierig zu behandeln sind – und die sehr viele Menschen betreffen: Darmkrebs, Krebs der Bauchspeicheldrüse sowie zwei besonders aggressive Formen von Brustkrebs (Triple-negativ und Luminal B).

Das Besondere am Konzept von SATURN3 ist, dass den Patientinnen und Patienten nicht nur bei der Erstdiagnose Tumorbiopsien entnommen werden, sondern dass im Verlauf der Erkrankung mehrfach Gewebeproben der Tumoren gewonnen werden. So erhalten die Forschenden auch Tumorzellen, die bereits Resistenzen entwickelt haben.

Das Tumormaterial wird dann genetisch, epigenetisch und funktionell untersucht, und zwar für jede einzelne Zelle separat, um die extreme Heterogenität der Tumoren darzustellen. Dabei können die beteiligten Forschungsteams auf modernste analytische Techniken, bildgebende Verfahren sowie Methoden der künstlichen Intelligenz zugreifen, die bei den Partnerinstitutionen des Konsortiums etabliert sind.

„So machen wir uns für jeden Patienten ein zeitaufgelöstes, mehrdimensionales Bild der Tumoren auf Einzelzell-Ebene. Dabei können wir erkennen, mit welchen molekularen Anpassungen sich die Krebszellen den jeweiligen Therapien entziehen. Ist dieser Prozess verstanden, können wir ihn möglicherweise gezielt blockieren", erklärt Andreas Trumpp vom DKFZ und HI-STEM, Ko-Koordinator von SATURN3. „An Tumor-Organoiden, die in der Kulturschale aus dem Tumormaterial gezüchtet werden, werden wir die neuen therapeutischen Ansätze zur Resistenzüberwindung erproben und dann in einem weiteren Validierungsschritt in Tiermodellen prüfen."

Wilko Weichert von der Technischen Universität München und ebenfalls Ko-Koordinator von SATURN3, erklärt: „Letztendlich ist unser Ziel, molekulare Veränderungen der Krebszellen zu identifizieren, die als zuverlässige Biomarker auf eine entstehende Resistenz hinweisen. In frühen klinischen Studien wird dann geprüft, ob sich diese mit neuen zielgerichteten Medikamenten oder Wirkstoffkombinationen überwinden lassen." Zum SATURN3-Konsortium zählen daher auch Arbeitsgruppen, die große Expertise in der Entwicklung von klinischen Studienprotokollen haben. SATURN3 wird außerdem beraten und unterstützt durch Patientenvertreterinnen und -vertreter, die ihre Erfahrungen direkt in den Forschungsprozess einbringen.

„Die aus der Heterogenität entstehenden Therapieresistenzen sind ein immenses medizinisches Problem. Je genauer wir diese Vorgänge im Tumor verstehen, desto besser können wir Strategien entwickeln, die verhindern, dass Krebstherapien ihre Wirksamkeit verlieren", fasst Studienkoordinator Jens Siveke die Ziele von SATURN3 zusammen.

* SATURN3: Spatial and Temporal Resolution of Intratumoral Heterogeneity in 3 hard-to-treat Cancers
** HI-STEM: Das Heidelberg Institute for Stem Cell Technology and Experimental (HI-STEM) gGmbH wurde 2008 als Public-Private-Partnership von DKFZ und Dietmar Hopp Stiftung gegründet

An SATURN3 beteiligte Institutionen (alphabetisch):

  • Deutsches Konsortium für translationale Krebsforschung (DKTK)
  • Deutsches Krebsforschungszentrum (DKFZ)
  • European Molecular Biology Laboratory (EMBL), Heidelberg
  • Georg Speyer Haus Frankfurt
  • German Breast Group
  • HI-STEM gGmbH
  • LMU Klinikum München
  • Universitätsklinikum Augsburg
  • Universitätsklinikum Essen
  • Universitätsklinikum Frankfurt
  • Universitätsklinikum Freiburg
  • Universitätsklinikum Göttingen
  • Universitätsklinikum Heidelberg
  • Universitätsklinikum Köln
  • Universitätsklinikum Marburg
  • Universitätsklinikum Regensburg
  • Technische Universität München (TUM) mit ihrem Universitätsklinikum rechts der Isar

Ein Bild zur Meldung steht zum Download zur Verfügung unter:
www.dkfz.de/de/presse/pressemitteilungen/2021/bilder/OrganoideforSaturn3.jpg 

BU: Aus einzelnen Tumorzellen können zu verschiedenen Zeitpunkten der Erkrankung in der Kulturschale „Minitumoren", so genannte Tumororganoide gezüchtet werden. Daran lässt sich die Evolution der Krebszellen beobachten und ihre Reaktion auf Wirkstoffe testen.

Nutzungshinweis für Bildmaterial zu Pressemitteilungen
Die Nutzung ist kostenlos. Das Deutsche Krebsforschungszentrum (DKFZ) gestattet die einmalige Verwendung in Zusammenhang mit der Berichterstattung über das Thema der Pressemitteilung bzw. über das DKFZ allgemein. Bitte geben Sie als Bildnachweis an: „Quelle: Jackstadt/HI-STEM
Eine Weitergabe des Bildmaterials an Dritte ist nur nach vorheriger Rücksprache mit der DKFZ-Pressestelle (Tel. 06221 42 2854, E-Mail: presse@dkfz.de) gestattet. Eine Nutzung zu kommerziellen Zwecken ist untersagt.

Im Deutschen Konsortium für Translationale Krebsforschung (DKTK) verbindet sich das Deutsche Krebsforschungszentrum (DKFZ) in Heidelberg als Kernzentrum langfristig mit onkologisch besonders ausgewiesenen universitären Partnerstandorten in Deutschland.

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Beim Krebsinformationsdienst (KID) des DKFZ erhalten Betroffene, Interessierte und Fachkreise individuelle Antworten auf alle Fragen zum Thema Krebs.

Um vielversprechende Ansätze aus der Krebsforschung in die Klinik zu übertragen und so die Chancen von Patientinnen und Patienten zu verbessern, betreibt das DKFZ gemeinsam mit exzellenten Universitätskliniken und Forschungseinrichtungen in ganz Deutschland Translationszentren:

  • Nationales Centrum für Tumorerkrankungen (NCT, 6 Standorte)
  • Deutsches Konsortium für Translationale Krebsforschung (DKTK, 8 Standorte)
  • Hopp-Kindertumorzentrum (KiTZ) Heidelberg
  • Helmholtz-Institut für translationale Onkologie (HI-TRON) Mainz – ein Helmholtz-Institut des DKFZ
  • DKFZ-Hector Krebsinstitut an der Universitätsmedizin Mannheim
  • Nationales Krebspräventionszentrum (gemeinsam mit der Deutschen Krebshilfe)
Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Archiv Pressemitteilungen

Durchsuchen Sie unser Pressemitteilungsarchiv nach einem bestimmten Thema oder Jahr für Jahr.

RSS-Feed auf www.dkfz.de

Sie können unseren RSS-Feed ganz einfach abonnieren - unkompliziert und kostenlos.

RSS-Feed
nach oben
powered by webEdition CMS