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Purpose: In this study, plasma samples from a multicentric case-control study on lymphoma
were analyzed for the identification of proteins useful for diagnosis.
Experimental design: The protein content in the plasma of 100 patients suffering from the
three most common B-cell lymphomas and 100 control samples was studied with antibody
microarrays composed of 810 antibodies that target cancer-associated proteins. Sample pools
were screened for an identification of marker proteins. Then, the samples were analyzed
individually to validate the usability of these markers.
Results: More than 200 proteins with disease-associated abundance changes were found. The
evaluation on individual patients confirmed some molecules as robust informative markers
while others were inadequate for this purpose. In addition, the analysis revealed distinct sub-
groups for each of the three investigated B-cell lymphoma subtypes. With this information, we
delineated a classifier that discriminates the different lymphoma entities.
Conclusions and clinical relevance: Variations in plasma protein abundance permit discrimi-
nation between different patient groups. After validation on a larger study cohort, the findings
could have diagnostic as well as differential diagnostic potential. Beside this, methodological
aspects were critically evaluated, such as the value of sample pooling for the identification of
biomarkers that are useful for a diagnosis on individual patients.
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1 Introduction

Proteins are the molecule class that executes most cellular
functions, and many regulative processes take place at the
protein level. The latter is reflected by the fact that 5–10%
of mammalian genes encode for proteins that modify other
proteins. Also, 98% of all current therapeutic targets are pro-
teins. Their obvious central role in cellular activity promotes
the search for protein biomarkers as a means for diagnostics.
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Variations that are critical to disease manifestation occur at
the levels of amino acid sequence, protein structure, concen-
tration, location, and interaction. This variety and the direct
link to function represent the principal advantages of protein-
based diagnostics compared to analyses of nucleic acids. In a
single-molecule class, classifiers can be defined by a combi-
nation of different types of variations, thus facilitating stan-
dardization. To date, however, only a very small percentage of
the large number of existing proteomic disease biomarkers
is used in clinical practice [1–3].

This lack of translation is mainly caused by bottlenecks in
marker validation [4,5]. Validation requires an assessment in
a standardized manner with a sufficiently large number of
samples as well as appropriate controls [6–9]. The majority
of current protein biomarkers were identified by MS. This
technology is not easily adaptable to an analysis of large sam-
ple numbers with sufficient sensitivity [1, 10]. In addition,
MS cannot analyze the many different types of protein alter-
ation in one assay format and the transition of the biomarker
information into an assay, which can be implemented in a
clinical routine setting, such as an immunoassay, remains
difficult [10–12]. These obstacles could be overcome by di-
rectly using an immunoassay in biomarker discovery and the
validation phase [1,9]. Antibody microarrays are a multiplexed
form of immunoassay. In a single assay format, variations in
the abundance of proteins, structural differences in form of
protein isoforms or protein modifications, and the occurrence
of protein interaction can be analyzed. Although in complex
analyses a sandwich assay format is made impossible by the
number of antibodies displayed on the array, sensitivity can
be similar to that of ELISA [13,14] or better, down to the level
of single-molecule detection even in the absence of a signal
amplification scheme [15]. In terms of technical performance,
processes have been established, which permit analyses with
a degree of specificity, robustness and reproducibility that
meets the requirements of clinical applications [16]. Con-
comitantly, the corresponding cost per analyte is considerably
lower than in ELISA because of the simultaneous analysis of
very many analytes and much less consumption of the ex-
pensive binder molecules and the precious clinical sample
material.

Many immunobased proteome analyses performed to date
have concentrated on proteins from human body fluids, in
particular serum and plasma. One reason was the relative ease
of access, although robust protocols for the analysis of tissue
proteins exist [17]. Any diagnosis based on serum or plasma
would be of only minimally invasive nature and thus widely
applicable. Already analyses on arrays of limited complex-
ity performed with relatively few samples demonstrated the
technique’s potential [18–21]. Concerning lymphoma, Belov
et al. [22] used antibody microarrays directed at 82 surface pro-
teins to profile lymphoma and leukemia cells by a cell-capture
technique. Here, we looked at 200 plasma samples taken from
patients suffering from the three most common B-cell lym-
phomas and age- and sex-matched healthy controls. The mi-
croarray used for the analysis consisted of 810 antibodies that

target 741 different cancer-related proteins and six nonanti-
body binders—modified forms of receptors as well as ligands
involved in apoptosis [16]. The plasma samples were collected
as part of a population-based multicentric case–control study
on lymphoma [23], assuring high-quality and matching epi-
demiological background of lymphoma cases and controls.
In a two-phase approach, we initially analyzed sample pools
for the identification of relevant markers, followed by indi-
vidual analyses of the samples. By this process, we did not
only identify common markers but could evaluate immedi-
ately their value for the diagnosis of individual patients. The
markers enable a precise discrimination of the lymphoma en-
tities based on their plasma profile. Moreover, we were able
to identify subtypes of considerably differing profiles within
each of the lymphoma classes.

2 Materials and methods

2.1 Array production

Microarrays were produced and analyzed using protocols and
strict quality control procedures as reported earlier [16,24]. In
brief, a set of 668 target proteins was selected on the basis of
transcriptional studies of different cancer entities. Affinity-
purified polyclonal antibodies were produced in rabbits by
Eurogentec (Seraing, Belgium). Additionally, 142 antibod-
ies were purchased from different sources or provided by
collaborating partners. Lastly, six other proteins were added,
which are known to exhibit specific binding. A complete list of
binders is given in the Supporting Information Table 1. They
were characterized by different techniques, such as Western
blotting, immunohistochemistry, or fluorescence imaging.
In addition, the array has been used to analyze about 2000
protein samples from different sources (tissues, cell culture,
secretome, serum, urine), providing also information about
their quality [16, 25, 26].

The array composition and layout can be accessed
at the public repository ArrayExpress (A-MEXP-1939). All
molecules were immobilized on epoxysilane slides (Schott
Nexterion, Jena, Germany) at a concentration of 1 mg/mL
in spotting buffer made of 10 mM sodium borate, pH 9.0,
125 mM MgCl2, 0.005% w/v sodium azide, 0.25% w/v dex-
tran, 0.0005% w/v [octylphenoxy]polyethoxyethanol, using
a Microgrid microarraying robot (BioRobotics, Cambridge,
UK) and SMP3B pins (Telechem, Sunnyvale, CA, USA). All
arrays used in this study were from a single production batch
of some 1400 microarrays. Each array comprised 1800 fea-
tures. All antibodies were spotted at least twice in a random-
ized pattern in different array sectors. For control purposes,
antibodies were spotted, which bind the proteins beta-actin,
human IgM, glyceraldehyde-3-phosphatase dehydrogenase,
and albumin. For the same purpose, a polyclonal antibody
was added, which is directed against whole human serum
protein. Negative controls consisted of spotting buffer as well
as further control antibodies, for example, molecules directed
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against mouse IgG. All these controls were spotted in 8–18
copies across the entire array to ensure an even distribu-
tion of the controls. After printing, the slides were kept at
4�C overnight, washed ten times in PBS supplemented with
0.05% w/v Tween-20 and 0.05% w/v Triton X-100 (PBSTT),
and blocked by an incubation in 4% w/v skimmed milk pow-
der and 0.05% w/v Tween-20 in PBS overnight. After block-
ing, the slides were washed four times with PBSTT, twice
with 0.1× PBS, and dried by an air stream prior to storage
in a humidity chamber at 4�C. While the analyses reported
here were done within a few weeks of array production, the
arrays could be stored for up to 2 years without a change in
performance (data not shown).

2.2 Plasma samples

The plasma samples were derived from cases and controls
recruited into a population-based multicentric case–control
study on lymphoma conducted in Germany between 1999
and 2003 [23]. Written informed consent was given by all
donors and full ethics approval was obtained. In total, 61 sam-
ples of diffuse large B-cell lymphoma (DLBCL), 19 samples
of chronic lymphocytic leukemia (CLL), and 20 follicular lym-
phoma (FL) samples as well as 100 age- and gender-matched
controls were studied. All samples were derived from non-
smokers to prevent additional sources of bias in this study.
None of the patients received any cancer-related therapy prior
to sampling.

Since depletion of high-abundance proteins introduces a
strong bias in protein representation [16], the samples were
subjected to labeling without further processing. A commonly
used reference sample was prepared by mixing 5 �L of all 200
plasma samples. In addition, sample pools specific for the
four respective sample types (DLBCL, CLL, FL, healthy con-
trols) were generated accordingly. For all samples and pools,
the final protein concentration was measured by the bicin-
choninic acid assay (Thermo Scientific, Dreieich, Germany).

2.3 Sample labeling

Label reactions were performed at a protein concentration
of 4 mg/mL with 0.4 mg/mL of the NHS-esters of the
fluorescence dyes Dy-549 or Dy-649 (Dyomics, Jena, Ger-
many), respectively, in 100 mM sodium bicarbonate buffer,
pH 9.0, 1% w/v Triton X-100 on a shaker at 4�C. After 1 h,
the reaction was stopped by addition of hydroxylamine to
a final concentration of 1 M. Unreacted dye was removed
30 min later and the buffer changed to PBS using Zeba De-
salt columns (Thermo Scientific). Subsequently, Complete
Protease Inhibitor Cocktail (Roche, Mannheim, Germany)
was added as recommended by the manufacturer. All la-
beled protein samples were stored in aliquots at −20�C until
used.

2.4 Incubation

Incubations were performed as described in detail previ-
ously [16,24]. Homemade incubation chambers were attached
to the array slides. The arrays were blocked in a casein-
based blocking solution (Candor Biosciences, Weißensberg,
Germany) on a Slidebooster instrument (Advalytix, Munich,
Germany) for 3 h. A volume of 30 �L labeled sample and
30 �L labeled reference were mixed with 540 �L blocking
buffer supplemented with 1% w/v Tween-20 and 1× Com-
plete Protease Inhibitor Cocktail. After incubation for 15 h,
the slides were thoroughly washed with PBSTT, rinsed with
0.1× PBS as well as water, and dried in a stream of air. In order
to control for possible dye-specific effects, incubations with
reference samples were performed, which had been labeled
with Dy-549 or Dy-649, respectively. Pearson’s correlation co-
efficients of the two color channels were in the range of 0.92
≤ r ≤ 0.98 throughout. To assess if there were any differences
between the results from different days of incubation, 10%
of the samples were repeatedly incubated at different dates.
No significant variations could be observed; in a hierarchical
clustering, the incubations with identical samples matched
perfectly (data not shown).

2.5 Data analysis and statistical testing

Slide scanning was done on a ScanArray 4000 XL unit
(Packard, Billerica, MA, USA) using identical instrument
laser power and PMT. Relevant parameters, such as the con-
cordance of the two color detection channels, were carefully
validated throughout. Spot segmentation was performed with
GenePix Pro 6.0 (Molecular Devices, Union City, CA, USA).
Resulting data were analyzed using the linear models for
microarray data (LIMMA) package [27] of R-Bioconductor
after uploading the mean signal intensities. For normaliza-
tion, a specialized invariant Lowess method was applied as
described before [28]. In the analyses, duplicate spots were
accounted for [29]. For analysis of the sample pools and indi-
vidual samples, a one-factorial or two-factorial linear model,
respectively, was fitted with LIMMA resulting in a two-sided t-
test or F-test based on moderated statistics. All presented p val-
ues were adjusted for multiple testing by controlling the false
discovery rate according to Benjamini and Hochberg [30]. In
the M-CHiPS [31, 32] analysis, the mean signal intensities
for each spot were used. Data were normalized by log-linear
regression. Correspondence analysis resulted in a biplot of
both differentially abundant proteins and the samples. In the
plot, only proteins are shown, which exhibited significant
variations (p < 0.05) as determined by LIMMA (multiclass).

3 Results

In this study, 200 plasma samples from individual study
participants were analyzed. Stringent selection criteria were
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applied in order to minimize the risk of unaccounted fac-
tors that could influence the results. All biomaterial origi-
nated from a carefully designed national case–control study
on lymphoid neoplasms [23]. Only plasma of nonsmoking
study participants was used. None of the lymphoma patients
had undergone therapy prior to sampling. In addition, sam-
ples from a group of healthy controls were analyzed, who
matched the lymphoma patients in age and gender. Also for
the array analyses, strict quality measures were applied as
reported in detail earlier [16, 24]. Only antibody microarrays
of a single production batch of 1400 arrays were used. Based
on dual-color detection, each sample was incubated in pres-
ence of an aliquot of a common reference for normalization.
Overall, the process met the quality requirements set forth by
regulative agencies for DNA-microarray analyses.

3.1 Pool analyses revealed distinct protein profiles

for the three B-cell lymphomas

In a first analysis, pools made from all the plasma samples
of each lymphoma entity and the controls were studied, each
in four technical replicas. To visualize differences among
protein profiles, correspondence analysis was applied as im-
plemented in the M-CHiPS software package [31, 32]. It is
a computational method for investigating associations be-
tween variables, such as proteins and patient samples. Multi-
dimensional data are projected into two dimensions for vi-
sual inspection, thus revealing associations between them.
In the resulting biplot (Fig. 1), each pool sample is de-
picted as a colored square. Proteins that exhibited strong
differential abundance levels are shown as black dots. The
closer the colocalization of two squares, the higher is the
degree of association between them. Samples located in the
same direction from the plot centroid exhibit a similar ex-
pression pattern. The further a protein is located in the
same direction as a set of samples, the more specific it
is for this set. All experimental repetitions produced well-
defined discrete clusters, indicating the reproducibility of the
analysis. The three disease pools were clearly distinct from
each other and the healthy control group, illustrating sig-
nificant variations in protein content. For each of the three
lymphoma types, specifically associated proteins could be
determined.

In addition, this dataset was analyzed by LIMMA to screen
for proteins with a strong differential signal between the
groups and a low technical variability. The resulting p values
were used for screening purposes only. In contrast to p values
computed from the analysis with individual biological sam-
ples, they cannot be used to draw conclusions about the un-
derlying population of B-cell lymphoma, since the technical
replicates of the pooled samples are not statistically indepen-
dent. The analysis revealed a set of 234 proteins (correspond-
ing to 31% of the studied proteins) with differential levels
among the pools of lymphoma cases and healthy controls.

Matching to the correspondence analysis, a heatmap of the
respective expression levels (Fig. 2) showed highly distinct
patterns. In both analysis types—M-CHiPS and LIMMA—
pooled CLL plasma samples differed more from the pool
of healthy controls than DLBCL and FL did. The last two
were also more similar to each other. This correlates with the
protein numbers that were found to be associated with the
respective disease type (Fig. 2D). For CLL, 218 proteins exhib-
ited differential values, corresponding to more than a quarter
of the proteins under analysis. In DLBCL and FL samples, 22
and 13 proteins were present at differential protein levels, re-
spectively. The complete list can be found in the Supporting
Information Table 2.

For CLL and DLBCL, very strong differences of abundance
were recorded by some of the non-antibody features. For DL-
BCL, significantly lower signals were recorded by a fusion pro-
tein of tumor necrosis factor receptor superfamily member
6 (TNR6), also known as FAS or CD95, with an Fc fragment
of IgG. Signals at this feature are derived from binding lig-
ands in the plasma samples such as the Fas ligand (TNFL6).
Contrary, in CLL there was significantly stronger binding to
this receptor fusion protein. In addition, higher signals were
recorded by fusion proteins of three other receptors of the
TNF family: TNR1B, TR13B, and TNR21. Lower signals were
obtained on a fusion protein of the ligand TNF13, indicat-
ing that its binding partners are less abundant in the CLL
samples. For CLL, a strong binding to four different recep-
tors of the TNF family demonstrated stronger binding of lig-
ands in the plasma of CLL patients compared to healthy con-
trols. Consistently, for the ligands TNF10 and TNF14, higher
signals were obtained by antibody features in the respective
samples.

3.2 Individual analysis of 130 plasma samples

Subsequently, protein profiles of the samples were analyzed
individually in order to confirm the usability of markers iden-
tified from the pooled samples for the diagnosis of individual
patients. In contrast to the pooled sample approach, here the
variation of protein abundance within the four subgroups can
be estimated. The complete set of 100 lymphoma samples as
well as 30 samples derived from the healthy controls were la-
beled and incubated in a dual-color assay competitively with
the reference (pool of all samples). The healthy control sam-
ples were chosen from the total of 100 samples in a random
fashion, but with the restriction that they matched the gender
and age distribution of the diseased group. Twenty plasma
samples had signal background ratios smaller than two, most
probably due to protein degradation during sample storage.
Therefore, these samples were not considered in the data
analysis. Consequently, 110 incubations were analyzed, cor-
responding to 52 DLBCL, 18 FL, and 15 CLL patients as well
as 25 healthy controls with a matching age and gender distri-
bution (Table 1). Using LIMMA, an eight-factorial model was
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806 C. Schröder et al. Proteomics Clin. Appl. 2013, 7, 802–812

CLL

Healthy

DLBCL

FL
 TNFRSF21

ligands

(APP)

TNFRSF13B

ligands

(TNFSF13,

TNFSF13B),

TNFRSF1B

ligands

(TNFSF2,

TNFSF1)

TNFRSF13C

VIL1
KIAA0391

MUC 2
CHL1

RPL7

IL32

S100A6

IL10

MMP 7

CASP8

CASP9

IGF 1

FGF1

RASSF1

RUNX 3

TNFRSF10D

CDH1 3

CCNG1

CACNA1G
BRCA1
SFRP1

TJP2

BNIP3
CDKN1 C

GAS6

IFIT2

KRT8

IMPDH1

PAX2

TPM 2

MGMT TBB5

1 2
3 4

1  IL1A

2  LCN2

3  TNFRSF10B

4  IL12A

Figure 1. Definition of disease-specific protein profiles with sample pools. Correspondence analysis resulted in a biplot of both differ-
entially abundant proteins and the samples; the two axes represent the first and second principal component, respectively. Sample
pools are depicted as squares that are colored according to disease status; black spots stand for differentially expressed proteins. Each
pooled sample is represented by eight measurements from incubations on four arrays each as well as two intra-array replicates. Mea-
surements located in the same direction from the centroid exhibit a similar protein level pattern. The smaller the distance between two
samples the higher is the concordance of their expression profiles. In addition to more gradual variations, proteins were found, which
are particularly associated with the different sample groups. This is indicated by localization in the same direction off the centroid as the
respective sample type; the further the distance to the centroid the better is the association. A name tag is attached to the most prominent
proteins.

fitted to the data, representing the combinations of gender
and the four disease states. In a combined analysis of male
and female samples, 21 and 5 differentially abundant pro-
teins, respectively, were identified in CLL and DLBCL plasma
as compared to plasma from healthy controls, while no sig-
nificant variation was found in FL samples (Fig. 3; Table 2).
The variations of TR10B and IL12A in CLL patient plasma
were observed independently with two different antibodies
for each molecule.

3.3 Distinct subtypes in plasma profiles

The comparably low numbers of differential proteins in the
individual analyses as well as the lack of a clear separation in
hierarchical clustering indicates heterogeneity of the protein
profiles within each sample class. To assess the impact of
gender, we performed a gender-specific analysis and found
the protein AGR2 to be upregulated in the male subgroup
of FL patients, while WDR1 was found to be up- and BAX
to be downregulated in the female subgroup only (Table 3).

For DLBCL, a gender-based analysis identified two additional
proteins, BHE40 and ETS2 to be differentially expressed in
males only. For women with CLL, there were another three
protein markers, while six others affected only men. In gen-
eral, a gender-stratified analysis revealed that a major part of
the identified proteins was restricted to either the female or
the male samples.

No clear correlation with variables, such as gender, age,
body mass index, or technical factors, such as date of exper-
iment or label reaction, was found. In individual hierarchi-
cal clusterings for the lymphoma types, two subgroups were
found for FL (Supporting Information Fig. 1) and CLL (Sup-
porting Information Fig. 2), and three subgroups could be
defined for DLBCL (Fig. 4). In addition, two outlying sam-
ples were identified in the healthy sample set, two for FL
and one for CLL. Distinct sets of differentially expressed pro-
teins were identified for the subgroups and in comparison
to the expression in the healthy controls (Fig. 4, Supporting
Information Figs. 1 and 2). Interestingly, almost no differen-
tially expressed protein is present in more than one of the
subgroups.
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Figure 2. Results of the LIMMA analysis. In the volcano plots (A–C) the adjusted p values as well as the corresponding log-fold changes
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three lymphomas compared to the healthy controls as well as the degree of coregulation are visualized in a Venn diagram. (E) A heatmap
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3.4 Classification of patients

Due to the high heterogeneity of the plasma profiles within
each cancer type, a classification was impossible for individual
patient samples, if each lymphoma entity was defined as one
group (overall accuracy <50%). When taking the above sub-
groups into account, however, better results were achieved.
A classificator selected by PAM (prediction analysis for mi-
croarrays) allocated the samples into the previously defined
subgroups with an overall accuracy of 65.5%; 67% of the
samples were matched with the appropriate lymphoma type.
While only 30% of the healthy samples were correctly classi-
fied, a good sensitivity was reached with this classifier. The
sensitivity was 71% for CLL, 85% for DLBCL, and 60% for
FL.

4 Discussion

Here, we analyzed the protein content of plasma samples that
were obtained from cases and respective controls from an
epidemiological case–control study of lymphoid neoplasms
of patients with different types of B-cell lymphoma and com-
pared them to samples of appropriate healthy controls. By
application of stringent selection criteria, utilizing material
from an epidemiological study, we made sure that the dis-
ease and control samples matched on many aspects, in par-
ticular age, gender, and smoke status. Plasma of the cases
had been collected prior to any cancer-related treatment. A
large proportion (31%) of the studied proteins exhibited a
different protein abundance between the different groups
compared. This high proportion of identified proteins was

Table 1. Age distribution of samples and controls represented in the analysis of individual samples

Samples Min. First quartile Mean Third quartile Max.

Females Cancer (n = 45) 29.3 52.4 61.8 73.0 80.7
Control (n = 13) 32.6 48.0 60.9 74.5 80.5

Males Cancer (n = 40) 20.1 53.5 58.4 69.6 79.7
Control (n = 12) 25.4 46.1 57.1 72.5 78.1
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Table 2. Significant variations in protein levels as elucidated from
the analyses of individual samples

Uniprot entry Uniprot HGNC logFC Adjusted
accession symbol p-value

CLL associated proteins

TSN16_HUMAN Q9UKR8 TSPAN16 −1.00 2.2 × 10−2

SMAD2_HUMAN Q15796 SMAD2 −0.61 2.6 × 10−2

MCM5_HUMAN P33992 MCM5 −0.59 3.0 × 10−2

NPT1_HUMAN Q14916 SLC17A1 −0.45 4.6 × 10−2

PCNA_HUMAN P12004 PCNA 0.48 4.6 × 10−2

CATD_HUMAN P07339 CTSD 0.80 7.4 × 10−4

LEP_HUMAN P41159 LEP 0.87 4.6 × 10−2

IL1B_HUMAN P01584 IL1B 0.95 1.2 × 10−2

IL12A_HUMAN P29459 IL12A 0.98 6.3 × 10−3

CFLAR_HUMAN O15519 CFLAR 1.10 4.0 × 10−3

IL1A_HUMAN P01583 IL1A 1.11 9.8 × 10−3

IL12A_HUMAN P29459 IL12A 1.11 2.3 × 10−3

TR10B_HUMAN O14763 TNFRSF10B 1.21 5.0 × 10−4

TR10B_HUMAN O14763 TNFRSF10B 1.22 5.8 × 10−3

TNFA_HUMAN P01375 TNF 1.25 2.1 × 10−4

TR10C_HUMAN O14798 TNFRSF10C 1.25 2.1 × 10−4

TNFB_HUMAN P01374 LTA 1.27 7.4 × 10−4

TNR6_HUMAN P25445 FAS 1.31 2.6 × 10−4

IL8_HUMAN P10145 IL8 1.43 5.8 × 10−4

VCAM1_HUMAN P19320 VCAM1 1.46 1.9 × 10−3

IFNG_HUMAN P01579 IFNG 1.85 3.6 × 10−7

DLBCL associated proteins

BAK_HUMAN Q16611 BAK1 −0.62 3.7 × 10−2

CP1B1_HUMAN Q16678 CYP1B1 −0.54 2.0 × 10−2

RL7_HUMAN P18124 RPL7 −0.42 2.0 × 10−2

PLCG2_HUMAN P16885 PLCG2 0.46 4.4 × 10−2

CRP_HUMAN P02741 CRP 1.43 2.0 × 10−2

probably caused by the biased selection process of the anti-
bodies. They had been picked on the basis of transcriptional
variations observed in pancreatic, colon, and breast cancer

and are therefore more likely to bind tumor-specific proteins
than a randomly selected set of binders.

Clearly, the number of proteins targeted by a microarray
contributes to the success, information content, and quality
of discovery analyses. Also, adding for each protein, a second
antibody that targets a different epitope would strengthen the
quality further. Due to the direct labeling protocol, upscaling
the number of analytes on the microarray does not interfere
with procedural aspects and does not affect quality parameters
either, such as sensitivity and specificity. Future microarray
releases will consist of more antibodies and cover also protein
isoforms.

Among the three investigated lymphoma subtypes, CLL
exhibited the most different pattern in both the analysis of the
sample pools as well as the analysis of the individual samples.
This is not unexpected. CLL is a hematological disease; part of
the tumor cells are circulating in the blood stream [33], while
FL and DLBCL are solid tumors of lymphoid cells. In tran-
scriptional studies on purified B cells, similar proportions of
regulated transcript were found [34]. In plasma, cellular pro-
teins of circulating malign B cells cannot be analyzed, since
cellular particles are removed by centrifugation. However, the
proteins secreted by circulating CLL B cells and the lymphatic
system are present [35, 36]. In addition to tumor cell derived
proteins, other changes in the plasma composition are likely
to occur as a consequence of an immune response against
the tumor.

For CLL, a gene ontology (GO) analysis with the DAVID
bioinformatics resource [37] revealed that 16% of the differen-
tially expressed proteins are involved in the immune response
(GO:0006955), whereas 13% are connected to cell-cycle regu-
lation (GO:0051726) and 23% to the regulation of cell prolifer-
ation (GO:0042127). The most dominant GO-term—for 24%
of the proteins—is the regulation of programed cell death
(GO:0043067). In particular, a stronger signal transduction
of the TNF family was observed, indicated by increased levels
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Table 3. Gender specificity

Uniprot entry Uniprot HGNC Combined Females Males
accession symbol

logFC Adj. p-value logFC Adj. p-value logFC Adj. p-value

CLL

CXCR5_HUMAN P32302 CXCR5 0.45 0.086 0.06 1.000 0.39 0.026

CDC5L_HUMAN Q99459 CDC5L −0.46 0.130 −0.03 1.000 −0.44 0.026

RL18_HUMAN Q07020 RPL18 −0.44 0.140 −0.02 1.000 −0.42 0.031

ETS2_HUMAN P15036 ETS2 −0.43 0.099 −0.09 0.950 −0.34 0.036

IRS2_HUMAN Q9Y4H2 IRS2 −0.61 0.120 −0.12 0.960 −0.49 0.036

PLCG2_HUMAN P16885 PLCG2 0.37 0.240 −0.02 1.000 0.39 0.036

TNFA_HUMAN P01375 TNF 0.69 0.450 −0.35 0.900 1.04 0.036

LYAM2_HUMAN P16581 SELE 0.52 0.200 0.59 0.042 −0.07 0.830
IL13_HUMAN P35225 IL13 0.59 0.230 0.64 0.030 −0.04 0.920
CASP8_HUMAN Q14790 CASP8 0.81 0.100 0.82 0.002 −0.01 0.970

DLBCL

BHE40_HUMAN O14503 BHLHE40 0.40 0.260 −0.10 0.940 0.50 0.013

ETS2_HUMAN P15036 ETS2 −0.35 0.110 −0.02 0.990 −0.33 0.013

FL

AGR2_HUMAN O95994 AGR2 0.47 0.840 −0.27 0.930 0.74 0.020

BAX_HUMAN Q07812 BAX −0.85 0.840 −0.88 0.002 0.03 1.000
WDR1_HUMAN O75083 WDR1 0.69 0.700 0.96 4.4 × 10−15 −0.27 0.920

An analysis for gender-specific variations revealed proteins that were regulated either in female or male probands only. Significant results
are marked in bold letters.

of TNF receptors and ligands. This can lead to apoptosis via
induction of a cascade of caspases [38]. However, the lower
concentration of the essential caspases, CASP3, CASP8, and
CASP9, in the CLL plasma samples indicates that apoptosis
is repressed. This might be caused by a CFLAR-mediated
resistance, which was observed in CLL cells in previous stud-
ies [39, 40]. Accordingly, increased levels of CFLAR were ob-
served in CLL cases of this epidemiological study, indicating a

prevention of apoptosis and an induction of cell proliferation
via the NFKB and MAPK signal cascades [41–43].

An increased proliferation in the CLL blood samples was
also indicated by proteins that are directly involved in the
regulation of the cell cycle. CDC2, a protein essential for the
start of S-phase and mitosis, and the positive regulator pro-
teins CDK4 and CK5p3 were observed at higher levels. Con-
versely, inhibitors of the cell cycle such as CCNG1, CD2A2,

Hierarchical clustering of DLBCL-samples
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Figure 4. Identification of subtypes within DLBCL samples. Hierarchical cluster analysis revealed heterogeneous protein abundance within
each of the different lymphoma entities. For DLBCL, three subclasses were defined from the hierarchical cluster analysis. Each of these
subclasses was compared with the healthy control group individually. This led to individual lists of differential proteins with almost no
overlap.
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Clinical Relevance

An analysis of 100 plasma samples from B-cell
lymphoma patients and the same number of con-
trols led to the identification of several biomark-
ers. In addition, subgroups with partly common and
partly discrete plasma protein profiles were identi-
fied. Based on this information, different lymphoma

entities could be classified with high accuracy by a
noninvasive immunobased assay. After clinical vali-
dation, such markers could support physicians in dis-
ease prognosis and the selection of an appropriate
treatment scheme.

CDN1A, and CDN1C were found at reduced levels. Also,
PCNA levels were increased, which are well known to corre-
late with the proliferation of CLL cells and thereby progno-
sis [44]. In addition, the oncoproteins FRAT1 and c-fos were
identified at higher levels, which are known to be involved in
lymphoma progression [45, 46], while the tumor suppressor
proteins PTEN, BRCA1, RUNX3, and MAD4 were detected
at lower levels, in accordance with prior studies [47, 48].

Next to an insight into biological function, the study
pointed out interesting features as well as pitfalls of analy-
ses of pooled and individual samples. The experiments based
on sample pools led to the identification of a comparably
high number of potential biomarkers. Even relatively small
differences in the protein abundance of the pools could be de-
tected. In the pooling process, individual variations between
the samples are averaged out. However, for the molecules
TSN16, NPT1, PCNA, CATD, TNFA, TNR6 (FAS), TR10C,
IL8, and VCAM1, relevance for a diagnosis of CLL could be
confirmed also in the analysis of the individual patient sam-
ples. Only one protein (IL1a) produced contradictory results
on the very same antibody: it exhibited slight upregulation in
CLL in the individual sample analysis, while downregulation
was seen in sample pools. For detecting IFNG, we used three
different antibodies. One antibody showed upregulation in
the pooled samples, while the other two indicated a lower
expression in the individual samples. These discrepancies
might have occurred due to the different number of healthy
samples in the pooled (n = 100) and the individual analysis
(n = 25). Also, the binders may have different epitopes. Over-
all, the majority of proteins, for which differences were seen
in the pools, exhibited a similar expression pattern in the anal-
ysis of individual samples, although often at low significance
due to the biological heterogeneity. Thereby, the analysis of
sample pools is a cost-efficient approach for a first screening.
In this study, it led to a preselection of more than 200 poten-
tial marker proteins. Only 16 microarrays were needed for
pooled analysis as compared to 130 microarrays required for
the analysis of individual samples.

Analyzing individual samples has other advantages. It en-
ables the analysis of the distribution and heterogeneity of
each marker in the sample sets. The clinical usability of a
biomarker can only be proven by a validation on the level
of individual samples. Furthermore, only individual sample
data allow the stratification by sample-specific parameters,

such as sex, age, or other variables that have emerged as
influential at the level of data analysis. In an analysis of in-
dividual samples, expression levels can be correlated to any
available sample annotation.

In earlier work (unpublished data), we analyzed blood
samples from a population-based study and identified
smoking behavior and sex as two factors, which correlated
strongly with differences in subgroups. To avoid such bias,
we selected only samples from nonsmokers in this study.
The effect of sex on the protein biomarker set was controlled
by a gender-specific analysis of the individual samples.
Herein, particular proteins were identified, which differed
considerably between lymphoma patients and controls
restricted to either men or women. As a matter of fact, the
majority of the proteins found to be disease-specific was
stronger affected in either male or female. This underlines
the importance of considering gender effects in studies for
the detection or validation of biomarkers. This had been
observed before in an antibody microarray study on urine
samples comparing pancreatic cancer patients with healthy
controls [16] as well as in other studies [49, 50].

The strongest advantage of analyses on individual sam-
ples, however, is the possibility to identify unknown sources
of variation. In this study, we identified subgroups within
the DLBCL, CLL, and FL patient groups by a hierarchical
cluster analysis. Between each other, these subgroups had
a very heterogeneous protein profile in blood, for which no
correlation was found with any available clinical (age, gender,
body mass index) or technical annotation (batch of incubation
or sample labeling). Each of these subgroups was compared
to the healthy control group. Although the sample number
within each subgroup was low, more differential proteins
with higher significance levels were obtained in this compar-
ison. This is caused by the fact that the protein profiles of the
individual subgroups are less heterogeneous than that of the
different lymphoma disease entities. FL, DLBCL, and CLL are
well known not to be a homogeneous disease but have a very
heterogeneous tumor biology as well as prognosis [51–54].

Based on DNA-microarray analysis, it was possible to iden-
tify the source and stage of B cells in the oncogenesis of
DLBCL [51]. This information can be used for prognostic
purposes and to decide on targeted therapy. Also IHC classi-
fiers have been developed [52]. In addition, it was proposed
to use the phenotype of circulating cells for diagnosis and
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prognosis [53]. However, there is still the need for an easy,
noninvasive, and robust methodology for a differentiation
between tumor types, which can be implemented in clinics.
While other options for an efficient diagnosis of lymphoma
do exist, we demonstrated herein an efficient classification
of three investigated lymphoma entities at the protein level
with antibody microarrays. Also, within the lymphoma en-
tities, samples could be grouped into subtypes on the basis
of common and distinct blood protein profiles. While the in-
vestigation of 200 plasma samples is comparably large as a
discovery study at the protein level, the numbers within each
sample group and subgroup are too small for a proper cross-
validation. Therefore, in order to assess clinical implications,
the findings need to be validated in a larger study population.
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