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Abstract

Simple, reliable tools for diagnosis of human African Trypanosomiases could ease field surveillance and enhance patient
care. In particular, current methods to distinguish patients with (stage II) and without (stage I) brain involvement require
samples of cerebrospinal fluid. We describe here an exploratory study to find out whether miRNAs from peripheral blood
leukocytes might be useful in diagnosis of human trypanosomiasis, or for determining the stage of the disease. Using
microarrays, we measured miRNAs in samples from Trypanosoma brucei gambiense-infected patients (9 stage I, 10 stage II), 8
seronegative parasite-negative controls and 12 seropositive, but parasite-negative subjects. 8 miRNAs (out of 1205 tested)
showed significantly lower expression in patients than in seronegative, parasite-negative controls, and 1 showed increased
expression. There were no clear differences in miRNAs between patients in different disease stages. The miRNA profiles
could not distinguish seropositive, but parasitologically negative samples from controls and results within this group did
not correlate with those from the trypanolysis test. Some of the regulated miRNAs, or their predicted mRNA targets, were
previously reported changed during other infectious diseases or cancer. We conclude that the changes in miRNA profiles of
peripheral blood lymphocytes in human African trypanosomiasis are related to immune activation or inflammation, are
probably disease-non-specific, and cannot be used to determine the disease stage. The approach has little promise for
diagnostics but might yield information about disease pathology.

Citation: Leong S, Simo G, Camara M, Jamonneau V, Kabore J, et al. (2013) The miRNA and mRNA Signatures of Peripheral Blood Cells in Humans Infected with
Trypanosoma brucei gambiense. PLoS ONE 8(6): e67312. doi:10.1371/journal.pone.0067312

Editor: Emma H. Wilson, University of California, Riverside, United States of America

Received April 8, 2013; Accepted May 15, 2013; Published June 27, 2013

Copyright: � 2013 Leong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: SL was supported by a grant from the German Academic Exchange Service (Deutscher Akademischer Austauschdienst, DAAD). GS was supported by
the Alexander von Humboldt Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: cclayton@zmbh.uni-heidelberg.de

Introduction

African Trypanosomiases (AT) cause devastating diseases of

livestock and humans in areas of Africa that harbor the vector, the

Tsetse fly. Approximately 70 million people are currently

estimated to be at risk of contracting the disease. Between 2000

and 2009, about 175,000 human cases were reported, the vast

majority of which were caused by Trypanosoma brucei gambiense in

West Africa [1]. Human African trypanosomiasis (HAT) new

infection rates are currently relatively low, at about 10,000 cases

per year [2] but maintenance of this level relies on continuous

surveillance efforts [2]. The conventional profile of human African

trypanosomiasis (HAT) includes an initial hemolymphatic stage

(stage I), with no specific signs [3]. This progresses to a late stage

(stage II) involving the central nervous system. Progress is much

slower for T. b. gambiense infection than for infection by the East

African form, T. b. rhodesiense. Although most patients eventually

succumb to infection if untreated, a few cases have been reported

in which patients become asymptomatic or even self-cure [4,5].

The standard serological screening method for T. gambiense

disease is the Card Agglutination Test for Trypanosomiasis

(CATT), followed by a trypanoloysis test and parasitological

confirmation by microscopy. The CATT and trypanolysis tests

both rely on immunoglobulins that interact, respectively, with one

and three variant antigens on the surface of the trypanosomes; the

trypanolysis test is more specific [6]. Microscopy can be

supplemented by DNA amplification methods in the unlikely

event that facilities are available [2,7]. The only way to determine

the disease stage is via examination of the cerebrospinal fluid (CSF)

for trypanosomes or lymphocytes [2]. Although some molecular

markers are showing promise, these too rely upon a CSF sample

[8,9]. Ultimately, the ideal solution would be a drug, which can be

used to treat both stages [10,11], but in the meantime less invasive

methods to determine the disease stage would aid control efforts

and might remove one barrier to patients’ willingness to seek

diagnosis.
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CATT-seropositive individuals without parasitological confir-

mation are frequently encountered in T. b. gambiense endemic areas

(e.g. [12,13]). Some of these individuals are also positive in the

trypanolysis test, ruling out false positivity due to non-specific

agglutination. Follow-up of these individuals in Guinea has shown

that they can be classified into three categories: (i) those who

develop HAT later were presumably in the early phase of

infection); (ii) those who maintain high serological responses to the

CATT (.2 years) may be asymptomatic carriers and (iii) those

who later becoming negative in the CATT might have self-cured

[5]. Both host and parasite variations have been implicated in this

diversity in disease presentation [14,15]. Humans respond to

infection with increases in various cytokines; results from mice

implicate innate, macrophage-based immune responses in protec-

tion, in addition to antibody-mediated responses to the major

surface antigen, the variant surface glycoprotein [15]. A recent

microarray-based study of mice infected with T. b. brucei (which is

closely related to T. b. rhodesiense) confirmed activation of

macrophages and several cytokine responses [16].

MicroRNAs (miRNAs) are small RNAs of about 21 nt which

bind to mRNAs and regulate their stability and translation

[17,18]. In mammals, they have important roles in many

processes, including inflammation, immunity and control of cell

growth and differentiation [19,20,21]. There have therefore been

numerous attempts to determine whether levels of miRNAs in

peripheral blood correlate with cancer progression and circulatory

disease; both the cellular and the cell-free serum fractions have

been investigated [22,23,24,25]. Much less attention has been paid

to the roles of miRNAs in infectious disease, with most

experiments focusing on intracellular pathogens, especially viruses.

The few reports of host miRNA responses during parasitic disease

are so far restricted to diseases caused by experimental infection by

Apicomplexa: they include reports of various miRNAs whose

expression was affected by infection of mice with Plasmodium

[26,27], and of tissue culture cells with Toxoplasma [28,29] or

Cryptosporidium [30].

We have here analysed the peripheral blood miRNA profiles of

humans infected with T. b. gambiense, with a view to both

biomarker and immune response analysis.

Methods

Ethical Issues
Written informed consent forms were obtained from patients

and healthy individuals whose blood samples were collected and

included in the present study. Blood samples were collected during

a larger study for diagnostics development, within the framework

of the World Health Organization control program for Trypano-

somiases in West Africa (RPC 222/14.06.2007). Our study was

also approved by the Heidelberg Ethical Commission (S-171/

2012). All individuals who participated in the present study

received an explanation of the scope of the study before they

signed the consent forms.

Blood Samples
During routine field screening by teams of the WHO control

program for Trypanosomiases in West Africa, people in the Boffa

sleeping sickness focus (Guinea) were screened with the CATT for

whole blood. Samples with a positive CATT result were screened

using the CATT plasma dilution test; all individuals that were

positive at a dilution of 1:4 or less were further examined for

parasites using the buffy coat concentration technique [31], and by

examination of lymph node aspirates if available, as well as a

trypanolysis test [31]. Stage determination was done by white cell

count for all newly infected individuals. All individuals with a

positive CATT test, with or without confirmed presence of the

parasite were invited to the Bofa local health center for enrollment

into the surveillance program and treatment, whether or not they

agreed to take part in the study. By venopuncture, 2.5 ml of blood

was collected from all consented participants directly into

PAXgene Blood RNA tubes (PreAnalytics-BD, New Jersey,

USA). The tubes were kept at 220uC for 2 days, then at 280uC.

Total RNA Extraction
Total RNA was extracted from blood samples using the

peqGold RNA extraction reagent (PeqLab) following an optimized

procedure. Blood samples in PAXgene tubes were centrifuged at

50006g for 10 min at 4uC. The supernatant was discarded and

the pellet completely re-suspended in 10 ml of nuclease-free water

by vortexing. Samples were again centrifuged at 50006g for

10 min at 4uC and the resulting pellet re-suspended in 2 ml of

TriFast PeqGold. 400 ml of chloroform were added and the

samples were homogenized for 30 sec at room temperature and

then left for 3 min at room temperature. The aqueous phase was

separated by centrifuging at 120006g for 15 min at 4uC and

transferred into an RNase-free Eppendorf tube containing 500 ml
of isopropanol. The tubes were kept at 220uC for 1 h and

centrifuged at 120006g for 10 min at 4uC. The resulting RNA

pellet was washed two times in 75% ethanol, re-dissolved,

precipitated twice with 3 M sodium acetate and re-suspended in

50 ml of water. The quality of total RNA was checked by gel

analysis using the Total RNA Nano Chip assay on an Agilent 2100

Bioanalyzer (Agilent Technologies GmbH, Berlin, Germany).

RNA concentrations were determined using the NanoDrop

spectrophotometer (NanoDrop Technologies, Wilmington, USA).

Molecular Diagnosis
PCR-based diagnosis was performed on all patient samples

using species-specific primers. DNA was extracted from samples

by ethanol precipitation of the aqueous phase obtained after RNA

extraction using peqGold Trifast following the manufacturer’s

recommendations (Peqlab, Erlangen, Germany). The PCR

reaction was carried out in a 25 ml reaction using the Q5 high-

fidelity DNA polymerase (New England Biolabs, Frankfurt,

Germany). One tenth of the DNA sample (equivalent to 0.25 ml

blood) was used. The primers were for specific detection of T. b.

gambiense [32]. Product DNA was visualized by ethidium bromide

staining of a 1.5% agarose gel. Results are included in Table 1.

miRNA Expression Profiling
Analysis of the differential expression of circulating miRNAs

was done using the miRNA Microarray System with miRNA

Complete Labeling and Hyb Kit (which represents 1205 human

and 144 human viral miRNAs) (Agilent) following the manufac-

turer’s instructions. Briefly, after total RNA extraction and quality

control using the Agilent Bioanalyzer, 100 ng of total RNA was

dephosphorylated using calf intestinal alkaline phosphatase at

37uC for 30 min. The samples were then denatured in 100%

DMSO at 100uC for 5 min and ligated to Cyanine3-pCp at 16uC
in a circulating water bath for 2 h and purified on a micro bio spin

column. The eluate was vacuum dried at 55uC. Samples were

resuspended in 18 ml of nuclease-free water. 4.5 ml of the 10X GE

Blocking Agent and 22.5 ml of 2x Hi-RPM hybridization buffer

were added to each sample and mixed by vortexing. Samples were

then heated at 100uC for 5 min and kept on ice. Hybridization

was done in a SureHyb chamber at 55uC for 20 h in a

hybridization oven. Slides were washed two times at room

temperature and once at 37uC for 5 min and scanned using an

miRNA in Human Sleeping Sickness
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Agilent scanner (SureScan). Data was extracted using Agilent

feature extraction software and analyzed with Chipster microarray

data analysis software [33]. Each slide has 8 chambers. In each

case, three chambers were used for control samples and the

remaining five were used for individual patient or seropositive

samples. All signals were measured relative to the average from the

three controls. Each patient or seropositive sample was analysed

once, since there was insufficient material for replicates.

qRT-PCR
qRT-PCR was carried out to confirm the profiles observed from

miRNA expression profiling. To this end, 0.75 mg of total RNA

Table 1. Sample classification based on multiple diagnostic tests.

Patient CATT Mn-BC Cell Stage PCR Trypano-lysis Status miRNA pattern

Bo.470/6 + .100 0 I + + HAT A

Bo.471/6 + .50 0 I + + HAT A

Bo.472/6 + + 0 I + + HAT A

Bo.475/6 + 10 5 I + + HAT A

Bo.480/6 + .100 5 I + + HAT A

Bo.481/6 + 6 1 I + + HAT A

Bo.484/6 + .100 1 I + + HAT A

Bo.487/6 + + 2 I + + HAT A

Bo.502/6 +/2 1 I + + HAT A

Bo 482/6 + .50 32 II + + HAT A

Bo.473/6 + 6 6 II + + HAT A

Bo.474/6 + 10 212 II + + HAT A

Bo.476/6 +/2 .50 541 II + + HAT A

Bo.477/6 + .20 15 II + + HAT A

Bo.478/6 + .10 228 II + + HAT A

Bo.479/6 + 2 13 II + + HAT A

Bo.</6 + .100 80 II + + HAT A

Bo.485/6 + .50 6 II + + HAT A

Bo.486/6 + + 6 II + + HAT A

Bo.488/6 + .100 51 II + + HAT A

Bo.492/6 + 2 2 + Seropo/AT A

Bo.494/6 + 2 2 2 Seropo/AT A

Bo489/6 + 2 2 + Seropo A

Bo500/6 +/2 2 2 + Seropo B

Bo.490/6 + 2 2 + Seropo A

Bo.498/6 + 2 2 + Seropo B

Bo.527/6 + 2 2 + Seropo B

Bo.491/6 + 2 2 2 Seropo A

Bo.493/6 + 2 2 2 Seropo B

Bo.499/6 + 2 2 2 Seropo A

Bo.520/6 + 2 2 2 Seropo B

Bo495/6 + 2 2 2 Seropo B

Bo.537/6 2 2 2 2 Control B

Bo.538/6 2 2 2 2 Control B

Bo.509/6 2 2 2 2 Control B

Bo.511/6 2 2 2 2 Control B

Bo.514/6 2 2 2 2 Control B

Bo.518/6 2 2 2 2 Control B

Bo.521/6 2 2 2 2 Control B

Bo.529/6 2 2 2 2 Control B

The patient codes are shown on the left. Mn-BC: Buffy coat mini concentration column, number of parasites; ‘‘+’’ means present but not counted; Cell: white cell count
in CSF for staging; PCR: presence of parasite DNA; Trypanolysis: positive result from the trypanolysis test; Status: Ser+2 positive by CATT; AT: previously treated patient.
miR expression pattern: A =more similar to infected, B =more similar to control.
doi:10.1371/journal.pone.0067312.t001
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were reverse transcribed into cDNA in a total volume of 20 ml
using the miScript reverse transcription kit (Qiagen, Hilden,

Germany) according to the manufacturers recommendations.

Following cDNA synthesis, the resulting cDNA was diluted 10-

fold before being used for real time PCR. The miScript primer

assay for Syber green-based real time PCR (Qiagen) was used for

qRT-PCR in a total volume of 12 ml, containing 1 ml of diluted
cDNA in a LightCycler 480 system (Roche, Mannheim,

Germany). The entire reaction was composed of 40 cycles,

consisting of an initial activation step at 95uC for 15 min followed

by 40 consecutive cycles of 94uC for 15 sec, 55uC for 30 sec and

70uC for 30 sec for transcript quantification. The U1RNUB6 gene

(Qiagen) was used as a standard.

Gene Expression Profiling
Gene expression profiling was performed using the illumina

Human Sentrix-12 BeadChip arrays, which contain more than

47,000 probes (Life Technologies, Darmstadt, Germany). Biotin-

labeled cDNA samples were prepared according to Illumina’s

recommended sample labeling procedure [34]. In brief, 200 ng

total RNA was used for complementary DNA (cDNA) synthesis,

followed by an amplification/labeling step (in vitro transcription) to

synthesize biotin-labeled cRNA according to the Illumina Total

Prep RNA Amplification Kit (Life Technologies). Biotin-16-UTP

was purchased from Roche Applied Science (Penzberg, Germany).

The cRNA was column purified and eluted in 60 ml of water. The
quality of cRNA was checked using the RNA Nano Chip Assay on

an Agilent 2100 Bioanalyzer and spectrophotometrically quanti-

fied (NanoDrop). Hybridization was performed at 58uC in GEX-

HCB buffer (Life Technologies) at a concentration of 100 ng

cRNA/ml, in a wet chamber for 20 h. For each array, a single

patient RNA was compared with pooled RNA from the controls;

six individual patient samples were studied, each on a single array.

Sample amounts were insufficient for replicates. Spike-in controls

for low, medium and highly abundant RNAs were added, as well

as mismatch control and biotinylation control oligonucleotides.

Microarrays were washed once in High Temp Wash buffer (Life

Technologies) at 55uC and then twice in E1BC buffer (Life

Technologies) at room temperature for 5 min; in between the

washing steps, they were always rinsed with ethanol at room

temperature. After blocking for 5 min in 4 ml of 1% (wt/vol)

Blocker Casein in phosphate buffered saline (PBS) Hammarsten

grade (Pierce Biotechnology, Rockford, USA), array signals were

developed by a 10-min incubation in 2 ml of 1 mg/ml Cy3-

streptavidin (Amersham Biosciences, Buckinghamshire, UK) and

1% blocking solution. After a final wash in E1BC, the arrays were

dried and scanned. Microarray scanning was done using an iScan

array scanner (Illumina). Data extraction was done for all beads

individually, and outliers with a median absolute deviation

.2.5 were removed. All remaining data points were used for the

calculation of the mean average signal for a given probe, and

standard deviation for each probe was calculated.

Gene functions were annotated using the GeneCard database

(http://www.genecards.org/) [35].

Target Prediction and Core Analysis
MiRNA target prediction was done using the target prediction

software incorporated into the Ingenuity Pathway Analysis (IPA)

software Ingenuity Systems, www.ingenuity.com. To this end,

both highly predicted and experimentally identified miRNA

targets with relevance to pathogen induction as well as immune

responses were queried. All resulting miRNA targets were scored

against all genes that were differentially regulated from the gene

expression profiling experiments. miRNAs and corresponding

targets that went through this filter were subjected to a core

analysis in IPA to find out cross relationships and potential

downstream effects involving other molecules that could be major

players in infection.

Statistical Analysis
Data analysis was done using Chipster microarray data analysis

software [33]. All samples were quintile normalized across chips

and filtered according to standard deviation (0.95) and inter-

quartile range. The empirical Baye’s two group t-test (p,0.05) was

used to test for differential miRNA expression between different

sample groups. The Benjamini-Hochberg correction was applied

to all p-value calculations. For linkage clustering, the Pearsons

correlation coefficient was calculated. Quantitative real-time

(qRT-) PCR was carried out in triplicates for a confirmation of

microarray data. Resulting data were expressed as mean 6

standard deviation (SD). All miRNA with a mean difference

having a p-value of ,0.05 for a two-sided unpaired student t-test

were considered significantly regulated.

Results

Patient Screening
During a screening campaign, 14,445 individuals were screened

with the CATT test. 324 tested positive for the CATT on whole

blood while 114 had a positive test for the CATT using plasma at

a fourfold dilution. Trypanosomes were found in 45 of the latter;

the remaining 69 subjects were classified as seropositive, parasite-

negative. 40 samples were chosen for our study (Table 1). We

included 8 control samples from sero-negative, parasite-negative

people (group C). A second group of CATT-positive, but

parasitologically and PCR-negative individuals (group CP) includ-

ed 5 who were trypanolysis-positive, and 7 who were trypanolysis-

negative. The remaining 20 subjects were patients who were

positive by CATT, PCR and parasite detection: 9 in stage-I (group

HAT-1), and 11 in stage-II (group HAT-2). We note that the

parasitological test used here is very sensitive, detecting 10

parasites/ml blood when 5 ml blood is used as starting material

[31]; the PCR test that we performed, using DNA from 0.25 ml

blood, had a similar sensitivity of 10 trypanosomes/ml [32]. The

concordance of these results can be seen in Table 1. RNA was

prepared from the 40 samples and used for gene expression

analysis.

miRNA Expression Analysis
We analyzed the expression levels of 1205 miRNAs. Results are

accessible at ArrayExpress (http://www.ebi.ac.uk/arrayexpress/)

under accession number E-MTAB-1467. Fourteen miRNAs were

found to be differentially expressed between all patients (groups

HAT-1 and HAT-2) and the control group (group C) (Table 2,

Figure 1). Among these 14 miRNAs, 13 were significantly

differentially regulated between patients with stage-II disease

(group HAT-2) and controls (group C) while ten miRNAs were

differentially expressed between stage-I patients (group HAT-1)

and controls (group C). However, not one miRNA could be used

to distinguish between stage I (HAT-1) and stage II (HAT-2)

patients.

Of the 14 miRNAs, miR-193b and miR-338 were increased in

patients, the others were decreased. Three individual miRNAs

(miR-199a-3p, miR-27b and miR-126*) were able to differentiate

all patients from controls (group C) (p,0.05) (Figure 1 & Figure 2).

However, in each case, at least one seropositive, trypanolysis-

negative person also showed a ‘‘patient-like’’ miRNA level and in

one case (mir-126*) an uninfected control also had a patient-like

miRNA in Human Sleeping Sickness

PLOS ONE | www.plosone.org 4 June 2013 | Volume 8 | Issue 6 | e67312



miRNA in Human Sleeping Sickness

PLOS ONE | www.plosone.org 5 June 2013 | Volume 8 | Issue 6 | e67312



level. To confirm the results, the three miRNAs were analyzed by

qPCR of 16 patient and 8 control samples. For miR-199a-3p and

mir27b, the average differences were only 2-fold (p-values 0.03

and 0.01 to distinguish between patient (HAT) and control (C)). In

contrast, the patients had, on average, 8-fold less mir-126* than

controls (p = 5E-10).

The CATT-positive, but parasite- and PCR-negative patients

(group CP) showed a range of miRNA profiles, which did not

correlate with the results of the trypanolysis test (Figure 1). We

were interested to see whether or not the miRNA profiles of the

seropositive group could be used to predict a possible infection in

these subjects. First, we applied two-group and multiple group tests

to the three sample groups. The group included two patients that

had been treated and had returned for follow-up. One was

trypanolysis-negative, the other positive. Unfortunately, we have

no information about the interval between treatment and sampling

for these two individuals. Both of these samples showed an

infected-like miRNA profile (Table 1). For the six miRNAs with

the best correlation with infection, the trypanolysis-positive treated

patient consistently showed an infected-like pattern, whereas the

trypanolysis-negative patient did not (Figure 1). The remaining

group CP samples split equally between the infected-and

uninfected-like patterns. Of the five trypanolysis-positive samples

in group CP, two had infected-like patterns, while three resembled

the controls; exactly the same was seen for the trypanolysis-

negative samples. Next, we created a dendrogram by treating the

levels of the differentially regulated miRNAs as individual traits.

Some of the group CP samples indeed clustered together with

those from patients, but again there was no correlation with the

positive trypanolysis result. This suggests that the miRNA profiles

we observed might not be specific to trypanosomiasis alone, but

could also result from other conditions.

Gene Expression Profiling
To obtain a preliminary idea of whether mRNAs that are

miRNA targets were also affected by HAT, six of the patient

samples were subjected to gene expression profiling, using various

pools of three CATT-negative sera as controls. In total, 656 genes

were found to be significantly (p,0.05) differentially regulated

between patients and controls, but only 56 were more than 2-fold

decreased and none was more than 2-fold increased (Table S1).

There was no difference between stage-I and stage-II patients for

any of these RNAs. Since we have no data on variations within the

controls, it is not possible to tell whether any of the gene expression

changes really is characteristic of HAT.

Only 34 of the genes with two-fold reduced mRNA are

functionally annotated, and they are involved in very diverse

functions. They include RFXAP, encoding a transcriptional

activator for some MHC class II genes; EFNAH4, a protein

tyrosine kinase potentially involved in the regulation of erythro-

poiesis and nervous system gene expression; LILRB5 and

LILRA4, which encode members of a leucocyte immunoglobu-

lin-like receptor family; and CARD6, a signal transduction

regulator that may affect the function of the transcription factor

NF-kappaB. Further analysis would be required to find out

whether these changes are specific to HAT.

miRNA Target Prediction and Core Analysis
We now predicted targets for the nine miRNAs that showed

some difference between all patients and controls, and also for

miR-195 as the next best-scoring miRNA (stage II only). More

than 3,000 highly predicted or experimentally investigated

putative targets were found. Next, we looked to see whether any

of the genes showing changed mRNA levels could also be a

possible target of the ten miRNAs. Results are shown in Table S2.

Figure 1. miRNAs with altered abundance in sleeping sickness. Data for the miRNAs from Table 1 are illustrated, showing the Log2 fold
changes for individual patients. The color code for the spots is at top right.
doi:10.1371/journal.pone.0067312.g001

Table 2. miRNAs with altered abundance in sleeping sickness.

miRNA ID Log2FC stage I p-value stage I Log2FC stage II p-value stage II Log2FC all p-value all

miR-199a-3p 26.9 2 E-4 26.9 1E-5 26. 8 2E-6

miR-27b 26.8 2E-4 26.7 6E-5 26.6 2E-6

miR-126* 26.7 3E-4 26.4 2E-4 26.4 2E-6

miR-98 25.9 3E-3 26.3 6E-4 26.1 2E-4

miR-409-3p 25.5 7E-3 25.1 0.01 25.2 1E-3

miR-4291 25.3 7E-3 26.1 6E-4 25.6 2E-4

miR-146b-5p 24.5 0.03 24.3 0.02 n/a n/a

miR-454 24.1 0.04 24.1 0.04 24.1 0.02

miR-193b 4.4 0.04 4.1 0.05 4.2 0.02

miR-195 25.1 0.01 24.5 0.01

miR-144* 24.7 0.01 24.3 0.01

miR-22* 25.1 3E-3 n/a n/a

miR-374c 24.6 0.02 n/a n/a

miR-338-5p 4.7 0.01 n/a n/a

All miRNAs that showed some alteration in at least one stage of sleeping sickness are shown. Log2 FC is Log2 of the arithmetic mean fold change in patients relative to
the average value for controls. The p-values are also shown. Student’s t-tests were used to compare paired and multiple groups, with a Benjamini-Hochberg correction
for false discovery. A threshold of 0.05 was set for significance. Although some miRNAs were significantly altered in only one stage, further analysis of these showed no
significant difference between stage I and stage II.
doi:10.1371/journal.pone.0067312.t002
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Since cell populations were used, we do not know whether

miRNAs and their cognate mRNAs were expressed in the same

cells, so we cannot claim any causative relationships. However, if

miRNAs were expressed in the same cell, it would be expected (if

anything) to decrease the abundance of target mRNAs.

Of the 34 predicted targets, only one, RFXAP, was down-

regulated more than 2-fold at the level of steady-state mRNA, but

the cognate miRNA was decreased as well. TIMP2, a moderately

elevated mRNA encoding a metalloprotease inhibitor, is a possible

target of two of the down-regulated miRNAs (miR-4291 and miR-

454). Among the genes with mildly decreased expression, four

(GPR146, EIF2S1, PLA2G4D and MAPK10) were possible

targets of one up regulated miRNA (miRNA-193b). One only

regulated cytokine gene that was a potential target showed only a

very small change and encoded CXCL11.

Discussion

In this study, we have identified nine miRNAs whose levels were

altered in the peripheral blood of HAT patients. When, however,

we compared the patient miRNA profiles with those of subjects

who were CATT-positive, but PCR-negative, we discovered that

some of the latter, too, had ‘‘HAT-like’’ miRNA profiles.

Moreover, such profiles were even seen in trypanolysis-negative

samples. While it is conceivable that these people had been

infected with trypanosomes that had low, or no, expression of the

antigens detected in the trypanolysis test [6], or that our PCR had

a lower sensitivity than that published [36], this is rather unlikely.

Alternatively, it might be that people with very low (undetectable)

parasite loads, who were able to control the infection, show

miRNA profiles resembling those of the uninfected controls.

However, the simplest interpretation is that the miRNA changes

that we observed in HAT patients were non-specific and perhaps

related to immune activation or inflammation. Indeed, non-

specific activation might explain some of the positive CATT

results from parasite-negative samples. Unfortunately, also, none

of the miRNAs that we identified could distinguish between stage I

and stage II infection.

During HAT, high immunoglobulin and immune complex

levels are documented in humans for both peripheral blood and

the CSF; peripheral polyclonal lymphocyte activation and changes

in B- and T-cell populations were also seen [37,38,39,40]. The

miRNA and mRNA transcriptomes of peripheral blood cells

reflect changes in cell types present, as well as in the physiology of

those cells. Using our limited sample, we did not see any

transcriptome changes that correlate with known pathology. Some

of the miRNA changes, however, did show potential links with

cytokines or cell proliferation.

miR-199a-3p, miR-193b and miR-126 have all been implicated

in the suppression of cell proliferation

[41,42,43,44,45,46,47,48,49,50,51]. We speculate, therefore, that

the decreases in miR-199a-3p and miR-126 that we observed in

our HAT samples could be related to an increase in leukocyte

proliferation. miR-193b, however was the only reproducibly

increased miRNA, which does not fit with this hypothesis.

Figure 2. Cluster dendrogram for all samples. The samples were classified according to miRNA expression patterns, using the miRNAs in Table 1,
and a dendrogram was made to show the relationships. The color codes are shown on the Figure.
doi:10.1371/journal.pone.0067312.g002

miRNA in Human Sleeping Sickness

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | e67312



Elevated interferon gamma levels have been seen in both T.

gambiense [52,53] and T rhodesiense [54] patients. Increases in TNF

alpha have been seen in T. gambiense patients [53,55,56] and in

vervet monkeys infected with T. rhodesiense [57]. It is therefore

interesting that miR-144* was decreased in most HAT patients,

since miR-144* has been reported to be involved in the inhibition

of TNF-alpha and IFN-gamma production and T-cell prolifera-

tion [58].

Mir27b is enriched in liver cells, is a negative regulator of

several mRNAs involved in lipid metabolism [59], and is also

involved in the control of angiogenesis [60]. An increase in

miR27b is required for expression if inducible nitric oxide synthase

(iNOS) during infection of epithelial cells by Crytosporidium parvum:

miR27b decreases expression of a negative regulator [61,62]. In

contrast, mir27b decreased in HAT patient peripheral blood.

In conclusion, we have shown that T gambiense infection of

humans causes alterations in the expression of miRNA in

peripheral blood leucocytes. Unfortunately, however, no miRNA

could be specifically linked to HAT infection or used to predict the

stage of the disease. Instead, several of the strongly affected

miRNAs have been linked previously to changes in cellular

proliferation, which might reflect the lymphocyte activation that is

seen in the disease.

Supporting Information

Table S1 mRNAs with significantly altered abundance in

sleeping sickness patients. Sheet 1: Results for individual patients
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(XLSX)

Table S2 Predicted targets of the miRNAs that were signifi-

cantly changed in sleeping sickness samples. Only mRNAs that

also showed a change in expression are included.

(XLS)
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