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ABSTRACT

Bloom’s syndrome (BS) is a cancer predisposition
disorder caused by mutation of the BLM gene,
encoding a member of the RecQ helicase family.
Although the phenotype of BS cells is suggestive
of a role for BLM in repair of stalled or damaged
replication forks, thus far there has been no direct
evidence that BLM associates with any of the three
human replicative DNA polymerases. Here, we show
that BLM interacts specifically in vitro and in vivo
with p12, the smallest subunit of human POL d
(hPOL d). The hPOL d enzyme, as well as the isolated
p12 subunit, stimulates the DNA helicase activity of
BLM. Conversely, BLM stimulates hPOL d strand
displacement activity. Our results provide the first
functional link between BLM and the replicative
machinery in human cells, and suggest that BLM
might be recruited to sites of disrupted replication
through an interaction with hPOL d. Finally, our data
also define a novel role for the poorly characterized
p12 subunit of hPOL d.

INTRODUCTION

The faithful completion of chromosomal DNA replication
is of crucial importance in determining the fidelity with
which genetic information is passed from mother to

daughter cells. Incomplete replication or the erroneous
copying of a damaged DNA template can give rise to
genome instability, accumulation of mutations and, in
multicellular organisms, to neoplastic transformation (1).
Chromosomal DNA replication in eukaryotic cells
requires three distinct DNA polymerases named DNA
polymerase a (POL a), e (POL e) and d (POL d). POL d
and POL e are required for replication of the leading
strand and for completion of lagging strand DNA synthe-
sis. Their respective roles in the replication of leading and
lagging strands are still uncertain, though it has been pro-
posed that POL d and POL e function specifically at the
lagging and leading strands of the replication fork, respec-
tively. POL d is also involved in different DNA repair
pathways as a gap filling enzyme (2). The mammalian
POL d has been studied extensively as a core enzyme con-
sisting of four subunits named p125, p66, p50 and p12 (3).
Two of the subunits form a tightly-associated catalytic
heterodimer consisting of the catalytic p125 subunit,
which has both 50 to 30 DNA polymerase and 30 to 50

exonuclease activities, and p50. The role of the p66 sub-
unit is to bind PCNA, the homotrimeric sliding clamp that
functions as a processivity factor for POL d during DNA
replication (4). A specific role for the p12 subunit has not
been identified thus far, although it has been shown to
interact with the p125 and p50 subunits of POL d and
Proliferating Cell Antigen (PCNA) (5), and data from
in vitro DNA replication assays indicate that addition
of p12 enhances the DNA polymerizing activity of the
enzyme (6). The levels of p12 are regulated by the
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proteasome through the mechanism that is not dependent
upon p12 ubiquitination (7). Apart from PCNA, no other
interacting protein has been characterized that specifically
associates with p12.

The RecQ family of DNA helicases represents a group
of evolutionarily conserved enzymes that are involved in
the maintenance of genome stability (8,9). There are five
members of this family known in humans called RECQL1,
BLM, WRN, RECQL4 and RECQL5. Defects in three of
these give rise to defined clinical disorders associated with
cancer predisposition and various aspects of premature
aging: mutations in the WRN and RECQL4 genes result
in Werner’s syndrome (WS) and Rothmund–Thomson
syndrome (RTS), respectively, both of which feature
genome instability, predisposition to some types of
cancer and the early onset of several aging features.
Mutations in the BLM gene cause Bloom’s syndrome
(BS), which is also associated with excessive chromosomal
instability and a high incidence of cancers of all types. In
contrast to WS and RTS, no obvious premature aging has
been observed in BS patients (10). Cells derived from BS
patients show a 10-fold higher frequency of reciprocal
exchanges between sister chromatids (SCEs), as well as
excessive chromosome breakage (11). The BLM protein
is a DNA structure-specific helicase that unwinds
DNA in 30 to 50 direction (12), and shows an apparent
preference for unwinding of synthetic Holliday junctions,
G-quadruplex (G4) DNA and D-loop DNA substrates
(13,14). These substrates represent different DNA struc-
tures that can be formed in vivo during DNA replication
and homologous recombination (HR) processes. Cell bio-
logical studies have shown that BLM is localized in the
nucleus of human cells within discrete foci termed pro-
myelocytic leukemia (PML) nuclear bodies (15). BLM
also localizes to nucleoli in S-phase cells (16), and to tel-
omeres in cells lacking telomerase (17). On the basis of the
aforementioned reports, it has been proposed that BLM
functions at the interface of DNA replication and recom-
bination, and facilitates the repair of damaged DNA repli-
cation forks (9,18).

A large body of evidence implicates BLM in DNA repli-
cation. First, DNA replication defects, such as a retarded
rate of nascent DNA chain elongation (19) and accumula-
tion of abnormal replication intermediates (20), have been
described in BS cells. Second, BLM interacts physically and
functionally with several proteins that play important roles
during DNA replication, such as replication protein A
(RPA) (21), FEN-1 (22) and chromatin assembly factor 1
(CAF-1) (23). Third, BLM is localized to replication foci,
particularly during late S phase, and this co-localization
increases in the presence of agents that inhibit DNA repli-
cation (23). Fourth, BLM expression is activated at the G1/
S boundary and peaks in late S-phase/G2 (15,16,24,25).
Fifth, BS cells are hypersensitive to agents that perturb
DNA replication, such as hydroxyurea (HU) (26).

In this work, we report the physical and functional
interaction of BLM with p12, the smallest subunit of
human POL d (hPOL d). Consistent with this interaction
playing an important biological function, we show that
the presence of the hPOL d enzyme, as well as the p12
subunit alone, can specifically stimulate the DNA helicase

activity of BLM. We also find that BLM specifically pro-
motes hPOL d strand displacement activity. Furthermore,
we show that the co-localization of BLM and hPOL d in
nuclear foci is activated during replicative stress. Our data
are consistent with a role for hPOL d in the recruitment of
BLM to sites of arrested or disrupted DNA replication
forks, in order for it to effect its role in fork repair and/
or stabilization.

MATERIALS AND METHODS

Purification of the hPOL d enzyme

Four-subunit hPOL d was expressed by infection of insect
cells with four recombinant baculoviruses, each encoding
a subunit of hPOL d. Recombinant baculoviruses encod-
ing the hPOL d subunits were a kind gift from Dr
Valdimir Podust. In order to produce an exonuclease defi-
cient hPOL d mutant, a D402A substitution mutation was
introduced into the p125/wt cDNA by PCR-based site-
directed mutagenesis of the transfer vector pVL1393/
p125. Primer sequences are available upon request.
Baculovirus-mediated expression of p125 D402A in
insect cells using the BacPAK6 system was conducted in
accordance with the manufacturer’s instructions
(Clontech Laboratories, Mountain View, California,
USA). hPOL d enzymes, wt and the exonuclease deficient
mutant, as well as a three-subunit exonuclease-deficient
mutant lacking the p12 subunit, were purified from
insect cells as described previously (6).

Purification of 6xHis-p12 protein

The p12 cDNA was cloned into the pRSETb vector. The
resulting pRSETb-p12 construct was verified by DNA
sequencing. p12 was expressed in Escherichia coli
BL21(DE3) (Novagen, Merck KGaA, Darmstadt,
Germany). Expression of p12 was induced by addition of
1mM IPTG to cultures grown at 378C to an A600 of 0.4.
After incubation at 378C for 3 h, the cells were harvested by
centrifugation. The E. coli pellet was resuspended in 30ml
of buffer A (30mM phosphate buffer, 10mM Tris–HCl,
pH 8.0, 500mM NaCl, 10mM imidazole, 1mM PMSF,
1 mMbenzamidine, 5 mg/ml leupeptin and 2 mg/ml pepstatin
A). The cells were disrupted with a French Press (twice) and
the lysate was sonicated on ice for 1min. After centrifuga-
tion (20 000 r.p.m. for 30min at 48C in a SS-34 rotor), the
soluble fraction was loaded onto a 1ml HiTrap Chelating
(Ni+) column pre-equilibrated with buffer A. The column
was washed with 50ml buffer A, and then with 20ml buffer
A containing 50mM imidazole. The bound protein was
eluted with 300mM imidazole in buffer A. After desalting
to buffer B (40mM Tris–HCl pH 7.5, 50mM NaCl, 1mM
EDTA, 1mM 2-mercaptoethanol, 15% (v/v) glycerol,
1mM PMSF, 1 mM benzamidine, 5 mg/ml leupeptin and
2 mg/ml pepstatin A) using a HiTrap Desalting column,
the eluate was loaded onto a 1ml HiTrap Heparin
column pre-equilibrated with buffer B. The column was
washed with 20ml buffer B, and the p12 protein was
eluted with a 20ml linear NaCl gradient (50–1000mM).
p12 was eluted at 300mM NaCl as tested by SDS–PAGE
and western blotting using an antibody against p12.
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Figure 1. BLM and p12 of hPOL d interact in vitro and in vivo. (A) Left panel, far-western analysis. hPOL �, total protein extract from Sf9 insect
cells, and hPOL d enzyme were subjected to SDS–PAGE, transferred to a nitrocellulose membrane, and were incubated with purified recombinant
BLM. Anti-BLM antibodies were used to permit the detection of p12 as a novel BLM-interacting protein (lane 6). Molecular weight markers are also
indicated on the left. Right panel, purified p12 subunit of hPOL d was subjected to SDS–PAGE, transferred to nitrocellulose membrane, incubated
with BLM, and subsequently probed with the anti-BLM antibody (lane 9). (B) Reciprocal far-western analysis. BSA, WRN and BLM (left panel)
were hybridized with the purified p12 and probed with the anti-p12 antibody (right panel). Anti-p12 antibodies were used to confirm that p12
specifically binds to BLM (lane 6). (C) BLM and p12 of hPOL d interact in the YTH assay. The L40 yeast reporter strain was co-transformed with
plasmids encoding the indicated full-length ‘bait’ (LexA-DBD) and ‘prey’ (Gal4-AD) fusions. Two independent colonies were grown on SD agar
plates lacking tryptophan and leucine, but containing X-gal, prior to assessment of b-galactosidase activity. Also shown are two negative controls,
p12 co-transformed with an empty prey vector and BLM co-transformed with lamin C protein. The previously described BLM/hp150 (CAF-1)
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The pool of p12 protein was diluted to 50mM NaCl and
finally loaded onto a Mono S column pre-equilibrated
with buffer B. Chromatography was performed as for the
HiTrap Heparin column. The yield from a 1 l culture was
�0.3mg of p12 protein with a purity of over 99.5%, as
judged by Coomassie Blue staining. Protein concentrations
were determined by the Bradford method (27) by using
Bovine Serum Albumin (BSA) as a calibration standard.

Production and purification of the p12 antibody

To produce the p12 antibody, the 6xHis-p12 protein was
expressed in E. coli from the pRSETb-p12 plasmid, and
purified from E. coli using conventional chromatography
(see above). Rabbits were immunized three times with
300 mg of 6xHis-p12 protein being used for each immuni-
zation. After the third immunization, the rabbit was sacri-
ficed to obtain the serum. The p12 serum was first purified
over a Protein G sepharose column, to isolate total IgG,
and then purified over a column coupled to the p12 pro-
tein, to obtain the IgGp12. For all subsequent studies, the
anti-IgG p12 was used at concentration of 0.2mg/ml in
dilution 1:100 in TBS, 0.05% Tween-20. Control IgG
was purified from preimune serum using Protein G
sepharose column.

Far-western analysis

Far-western assays were performed as described pre-
viously (28). Human WRN was a kind gift from
Dr Pavel Janscak, University of Zürich. Briefly, total
extracts of Sf21 insect cells (0.825 mg), 0.8mg of hPOL d,
0.3 mg of hPOL � and 0.2mg of p12 were subjected to 12%
SDS–PAGE and transferred to a nitrocellulose filter.
After blocking in 10% milk, 0.3% Tween-20 in TBS, for
1 h at RT, the filter was incubated for 2 h at 48C with BLM
(0.5 mg/ml) in TBS supplemented with 0.25% milk, 0.3%
Tween-20, 1mM DTT and 1mM PMSF (hybridization
solution). After the washing step (4� 15min, 0.25%
milk, 0.3% Tween-20 in TBS), western blot was per-
formed using the anti-BLM IHIC33 antibody (29) to
detect the presence of BLM. For the experiment presented
in Figure 1, BLM (1.2 mg), WRN (0.8 mg) and BSA (0.4 mg)
were separated on a 7.5% SDS gel and transferred to a
nitrocellulose membrane. The membrane was incubated
with 6xHis-p12 in hybridization solution, with a final con-
centration 6xHis-p12 of 0.1mg/ml. After washing, the
membrane was probed with an anti-p12 antibody (this
study) to detect the presence of p12. The input samples
were visualized with antibodies against BLM [IHIC33,

(29)] and WRN (ab-200, Abcam, Cambridge, UK). The
membrane was incubated with the BLM protein in hybri-
dization solution, with a final concentration of BLM of
0.5mg/ml. After washing, western blot using an anti-BLM
IHIC33 antibody was performed to detect the presence of
BLM. The input samples were visualized with antibodies
against hPOL � (ab5954, Abcam) and p12 (this study).

Yeast two-hybrid assay

Yeast two-hybrid (YTH) assays were performed as
described previously (23). The activity of the reporter
gene (b-galactosidase) was assessed using a liquid culture
assay with O-nitrophenyl-D-galactopyranoside as a sub-
strate. The constructs used to map the region of BLM
that interacts with p12 have been described previously
(30). The different p12 constructs were generated by
PCR using pMALc2e-p12 as a template, and were
cloned into the pBTM116+2 (MBN) vector. Sequences
of all plasmids, primers used and construction schemes are
available upon request.

Transfections and immunoprecipitation assay

The p12 cDNA was cloned into the p3xFLAG-myc-CMV-
23 (Sigma-Aldrich, Buchs, SG, Switzerland) vector using
plasmid pRSETb-p12 as a template and primers 50-gga
agatctcataggggatagagatgccag -30 (BglII) and 50- cccaagctt
atgggccggaagcggctc - 30 (HindIII). The resulting construct
was sequenced. 293T cells were transiently transfected with
p3xFLAG-myc-CMV-23-p12 by the calcium phosphate
precipitation method. Thirty-six hours after transfection,
cells were treated with 1mM HU for 24 h, and were then
harvested. Nuclear extracts were prepared from 293T cells
as described previously (31). Aliquots (500mg) of the
nuclear extracts were incubated with 3 mg of anti-FLAG
antibody coupled to magnetic, tosyl-activated Dynabeads
(Dynal Biotech, Invitrogen, Paisley, UK, M-280) accord-
ing to manufacturer’s instructions in immunoprecipitation
(IP) buffer (20mM HEPES pH 7.5, 150mM NaCl, 5mM
MgCl2, 0.1% Nonidet P 40, protease inhibitor) at 48C for
3 h. As a control, nuclear extracts were incubated with a
control rabbit IgG. The beads were washed three times in
IP buffer, before any protein complexes bound to beads
were eluted and analysed by SDS–PAGE. A 50 mg portion
of nuclear extract was used as input control. Subsequently,
western blot analysis was performed using the anti-FLAG
(SigmaM2) and anti-BLM ab 476 antibody (Abcam). C-18
(anti-BLM, Santa Cruz) was used for the reciproical co-IP
in the above-mentioned IP buffer containing 150mMKCl.

interaction (23) was used as a positive control. (D) BLM and hPOL d form a complex in human cells. 293T cells were transiently transfected with
FLAG-p12, and were synchronized in S phase using 1mM HU. Nuclear extracts derived from either unsynchronized (lane 3) or S-phase synchro-
nized cells (lane 4) were immunoprecipitated with the anti-FLAG antibody or control IgG, and were analysed by SDS–PAGE. One-tenth (50 mg) of
the same nuclear extract was used as input control (lane 1). Immunoprecipitated FLAG-p12 and BLM were detected by western blotting using the
anti-FLAG and anti-BLM antibody, respectively (lane 4). p125, the largest subunit of hPOL d, was also efficiently co-immunoprecipitated using the
same anti-FLAG antibody (lanes 3 and 4). Reciprocal co-IP is shown in the middle panel: lane 5, input; lane 6, IP with the control IgG; lane 7, IP
with an anti-BLM antibody (C-18) from nuclear extracts derived from unsynchronized 293T cells; lane 8, IP with an anti-BLM antibody (C-18) from
nuclear extracts derived from the S-phase synchronized 293T cells. The known BLM interacting protein, hp150 (CAF-1) was also efficiently
co-immunoprecipitated using the same anti-BLM antibody (lanes 7 and 8). As a loading control for lanes 1–8, 50 mg of the corresponding nuclear
extract was probed with an anti-PARP1 antibody. Right panel shows co-IP with anti-BLM antibody (C-18) from BS cell nuclear extracts (BS) and
BS cells containing the BLM cDNA (BS+pBLM). p12 could be co-immunoprecipitated in the presence of BLM from the S-phase synchronized
nuclear extracts (lane 12) but not in the absence of BLM (lane 11). Lanes 9 and 10 are the inputs of the two different nuclear extracts.
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Nuclear extracts from BS cells were used as a negative
control for the C-18 reciprocal co-IP.

DNA polymerase primer extension assay

A 18-nt primer was 50-end labeled with 32P using T4 poly-
nucleotidekinase and purified on a Sephadex G25 micro-
column. The X-poly template was generated by annealing
an 18-nt primer to four complementary oligonucleotides.
Three of these oligonucleotides are 50-nt long; the fourth
oligonucleotide has an extended arm that is complemen-
tary to the 18-mer primer at its 30 end. Twenty-five nucleo-
tides of each four oligonucleotides are fully complementary
to two out of three other oligonucleotides, so that the result
of annealing is a cruciform structure. Annealing and puri-
fication of the X-poly substrate was carried out as
described previously (32). Sequences of the primers used
are available upon request. Reactions (10 ml final volume)
were carried out in buffer containing 40mM Tris–HCl
buffer (pH 8.0), 3MmMgCl2, 1mM ATP, 50mM NaCl,
2mM DTT, 0.1mg/ml BSA, 10% glycerol, 0.15 pmol of
32P-18-nt-X-poly template, 100 mM each of dATP, dGTP,
dCTP and dTTP, 10 ng of hPOL d exo, and the indicated
amounts of BLM, human PCNA or E. coli RecQ.
Reactions were incubated at 378C for 30min, and were
terminated by rapid cooling on ice and addition of an
equal volume of denaturing loading buffer. The samples
were boiled, and 10 ml of sample were electrophoresed
through 12.5% polyacrylamide–8M urea gel in
0.5�TBE buffer, and the extension products were visua-
lized by autoradiography.

DNA helicase assays. Recombinant BLM protein was
purified from yeast cells as described previously (12).
The splayed arm DNA substrate that mimics a replication
fork was generated by annealing two partially complemen-
tary oligonucleotides, consisting of 25 nt of fully comple-
mentary and 25 nt of non-complementary sequences,
and was purified as described previously (13,32). The heli-
case reactions were carried out under presumed single-
turnover conditions; that is with helicase concentration
in excess over substrate concentration. The 10 ml reactions
contained 1� helicase buffer [33mM Tris–acetate (pH
7.8); 1mMMgCl2; 66mM sodium acetate; 0.1mg/ml
BSA; 1mMDTT; 1mM ATP], 100 pM substrate, various
concentrations of BLM and other proteins as stated
in figure legends. The reaction was allowed to progress
for 15min at 378C unless otherwise stated. Analysis
of reaction products was carried out as described pre-
viously (32).

Indirect immunofluorescence analysis

GM00637 transformed normal human fibroblasts were
grown on coverslips and were either treated with 2.5mM
HU for 18 h or cultured untreated, and were then pulse
labeled with 25 mM BrdU for 5min. The coverslips were
then rinsed with ice-cold PBS. Soluble proteins were
removed by incubating the slides in pre-extraction buffer
[10mM PIPES, 300mM sucrose, 3mM MgCl2, 20mM
NaCl, 0.5% Triton X-100 (pH 6.8)] for 5min on ice.
The cells were then fixed in 4% paraformaldehyde for

20min on ice. The immunostaining was performed as
described earlier (33) using the IHIC34 rabbit polyclonal
antibody (29) and the AlexaFluor 488 conjugated donkey
anti-rabbit secondary antibody (Molecular Probes,
Invitrogen, Paisley, UK) to detect BLM, at 1 : 200 and
1 : 800 dilutions, respectively. The A-9 mouse monoclonal
antibody (Santa Cruz Biotechnology Inc., Santa Cruz,
California, USA) against the catalytic subunit of hPOL
d and the CY3 conjugated sheep anti-mouse secondary
antibody (Sigma-Aldrich, Gillingham, UK) were used to
detect hPOL d, at 1 : 400 and 1 : 1000 dilutions, respec-
tively. BrdU incorporation was detected after repeated
paraformaldehyde fixation and HCl denaturation with
rat anti-BrdU primary antibody (Abcam) and
AlexaFluor 350 conjugated goat anti-rat secondary anti-
body (Molecular Probes), each at 1 : 300 dilution.
Epifluorescence microscopy, image acquisition and analy-
sis were carried out on a Nikon Eclipse 80i microscope
with the Lucia G software (Laboratory Imaging s.r.o.,
Prague, Czech Republic). Grabbed images were scored
manually using the Adobe Photoshop program. Foci
obtained following staining with either antibody (green
or red) were marked and counted. Foci were counted as
co-localizing if more than 50% of the green and red signal
was overlapping. Co-localization was expressed as percen-
tage of the total number of BLM (green) or POL d (red)
foci. The total number of cells scored in each treatment
was 100. Two independent experiments were conducted
with nearly identical results, of which only one is
presented.

RESULTS

BLM and hPOL d interact in vitro and in vivo

To analyse the possible functional interaction of BLM and
hPOL d, we first purified both BLM and the four subunit
hPOL d enzyme (Supplementary Figure. 1). A far-western
assay was then used to test for a specific interaction
between BLM and one or more of the hPOL d subunits.
As shown in Figure 1A, the BLM protein specifically
interacted with a protein of apparent molecular mass of
14 kDa (lane 6), which corresponds to p12, the smallest
subunit of hPOL d. In contrast, BLM did not interact with
any of the other three hPOL d subunits, with an unrelated
human DNA polymerase, hPOL � (lane 4), or with any
protein from the extract of Sf9 insect cells from which the
recombinant hPOL d enzyme was purified (lane 5). In
order to confirm that BLM specifically binds to p12, the
far-western analysis was repeated using full-length BLM
and purified recombinant p12 immobilized on nitrocellu-
lose. Clear evidence of binding was obtained (Figure 1A,
lane 9). Moreover, in a reverse far-western, purified p12
specifically bound to full-length BLM (Figure 1B, lane 6),
but not to BSA (Figure 1B, lane 4) or to another human
RecQ helicase, WRN (Figure 1B, lane 5). No cross-
reactivity of either the anti-BLM antibody with p12, or
the anti-p12 antibody with BLM was detected (Figure 1A,
lanes 1–3 and 7 and Figure 1B, lanes 1–3). Taken together,
these data indicate that BLM and p12 interact specifically
in vitro.
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To validate the results obtained from far-western
assays, we next performed YTH analysis. As shown in
Figure 1C, p12 interacted with full-length BLM, but not
with full-length WRN or E. coli RecQ, indicating that the
physical interaction between p12 and BLM is specific.
Furthermore, no YTH interaction could be detected
between the full-length BLM fused to Gal4-AD and any
of the other three hPOL d subunits (p125, p66 and p50)
fused to LexA-DBD (data not shown).

To gain insight into the possible association of BLM
and p12 in human cells, we performed co-IP assays
(Figure 1D). Because the endogenous levels of p12 are
very low and our newly generated anti-p12 antisera did
not work in IP assays, we were forced to use ectopically
expressed p12. For this, FLAG-p12 was transiently trans-
fected into 293T cells and the cells were subsequently syn-
chronized in S phase by treatment with 1mMHU for 24 h.
Synchronization of the 293T cells was confirmed by fluor-
escence activated cell sorter (FACS) analysis (data not
shown). Using an anti-FLAG antibody, we were able to
specifically co-immunoprecipitate BLM from HU-treated
cells (Figure 1D, lane 4), but not from unsynchronized
cells (Figure 1D, lane 3). As expected, the anti-FLAG
antibody efficiently precipitated p125, the largest subunit
of hPOL d, from both HU-treated and unsynchronized
cells (Figure 1D, lanes 3 and 4, lower panel). No BLM
was present in the precipitate when a control antibody was
used (Figure 1D, lane 2). A reciprocal co-IP experiment
was also carried out, in which an anti-BLM polyclonal
antibody was used to immunoprecipitate FLAG-p12
from 293T nuclear extracts. As shown in Figure 1D, p12
could be specifically co-immunoprecipitated with endo-
genous BLM from the S phase-synchronized cells (lane
8), but not from unsynchronized 293T cells (lane 7).
Furthermore, in addition to p12, the anti-BLM antibody
efficiently co-immunoprecipitated hp150, the largest sub-
unit of CAF-1 (Figure 1D, lanes 7 and 8, lower panel), a
protein shown previously to interact with BLM (23).
Similar co-IP results were obtained when 293T-derived
nuclear cell extracts were incubated with ethidium bro-
mide, indicating that the in vivo interaction of p12 and
BLM is unlikely to be mediated by DNA (data not
shown). Finally, the specificity of co-IPs with the anti-
BLM antibody was demonstrated in a control
experiment using nuclear extracts from BS (BLM�/�)
cells: in this case, the anti-BLM antibody could not co-
immunoprecipitate p12 from these cells (Figure 1D,
lane 11, lower panel), whereas it could efficiently co-immu-
noprecipitate p12 from S phase-synchronized BS cells con-
taining the BLM cDNA (BLM�/�+pBLM) (Figure 1D,
lane 12, lower panel). Collectively, these data indicate that
BLM directly associates with the p12 subunit of hPOL d
in vitro and in vivo, and that the BLM/p12 interaction in
human cells is exclusively or predominantly seen in cells in
which DNA replication is arrested.

Mapping of the interacting regions on BLM and p12

BLM contains several important domains; a conserved
helicase domain (aa 649–1006), an RecQ familiy C-term-
inal (RQC) domain (aa 1006–1077) and an Helicase,

RNAse D C terminal (HRDC) domain (aa 1212–1292),
all of which are involved in mediating protein–DNA inter-
actions, and possibly also protein–protein interactions
(Figure 2A). To identify the region of BLM that mediates
the interaction with p12, we generated a series of BLM
deletion mutants and tested them for their ability to inter-
act with full-length p12 in the YTH assay (Figure 2A). The
results indicated that p12 binds BLM in the region between
amino acids 447 and 770. This fragment of BLM comprises
the helicase-proximal region of the N-terminal domain and
part of the helicase domain. A similar YTH approach was
used to map the region of p12 that interacts with BLM. A
single short region of p12, comprising amino acids 31–60,
was found to be necessary and sufficient for interaction
with BLM (Figure 2B).

The hPOL d enzyme stimulates the BLM-mediated
unwinding of a model replication fork substrate

The physical interaction between BLM and hPOL d sug-
gested the possibility that the two proteins might function-
ally regulate each other’s activities during DNA
replication, recombination or repair. To test this hypoth-
esis, we first determined whether the hPOL d enzyme influ-
ences BLM helicase activity. In order to see a potential
effect of hPOL d, either positive or negative, the BLM
concentration used in the helicase assays was sufficient
only for partial unwinding of the substrate during a
15-min reaction period. To prevent the potential degrada-
tion of the helicase substrate or product by the exonu-
clease activity of hPOL d, the hPOL d enzyme used
carried a mutation in the exonuclease domain of p125
(D402A) and was, therefore, exonuclease defective.
When hPOL d was added to the reaction in concentrations
giving molar ratios of 25 to 0.4 times that of the
BLM concentration, we saw a significant, concentration-
dependent stimulation of helicase activity (Figure 3A,
lanes 6–12). BLM alone (Figure 3A, lane 3) and BLM
incubated with heat-denatured hPOL d (Figure 3A, lane
5) showed the expected low level of helicase activity, and
hPOL d alone displayed no DNA helicase activity
(Figure 3A, lane 4). We were also able to demonstrate
the stimulation of BLM helicase activity by hPOL d in
time-course experiments; hPOL d reproducibly increased
the initial velocity of the unwinding reaction (Figure 4C
center panel and D; and data not shown).
Next, we analysed the specificity of this apparent func-

tional interaction. We found that this stimulatory effect
was specific to the BLM/hPOL d complex, as hPOL d
had no effect on another RecQ helicase, E. coli RecQ, in
the same concentration range (Supplementary Figure 2A,
lanes 7–17, and B). Moreover, we showed that another
human DNA polymerase, hPOL �, which we had shown
did not bind to BLM in far-western analysis (Figure 1A),
did not influence BLM helicase activity (Supplementary
Figure 2C, lanes 6–17, and D). Taken together, these
data indicate that hPOL d shows a specific, functional
interaction with BLM.
The far-western and YTH analyses localized the BLM/

hPOL d interaction to the smallest p12 subunit of hPOL d
between residues 31 and 60 (Figures 1 and 2). We tested,
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therefore, the effect of recombinant p12 subunit on the heli-
case activity of BLM. p12 showed a concentration-depen-
dent stimulatory effect on BLM similar to that of the hPOL
d enzyme; however, the effective concentration range was
such that there was a large molar excess of p12 over BLM
(Figure 4A, lanes 6–15). Interestingly, heat-denatured p12
was also able to stimulate BLMhelicase activity at this high
concentration (1.609 mM; Figure 4A, lane 5), which, in the
light of the results showing that a small peptide is also able

to stimulate the helicase activity of BLM, is not inexplicable
(see below). As described earlier, we saw concentration-
dependent stimulation of BLM helicase activity by p12
only at high p12 concentration. Therefore, we designed
a different system to study this effect and monitored the
progress of the unwinding reaction over time in the pre-
sence or absence of p12. This revealed that p12 and the
hPOL d enzyme increased the kinetics of the BLM unwind-
ing reaction to a similar extent (Figure 4C and D).
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Figure 2. Interaction region mapping of BLM and p12. (A) Mapping of the BLM interaction region. The L40 yeast strain was co-transformed with
plasmids encoding the indicated BLM fragments fused to Gal4-AD and the full-length p12 fused to LexA-DBD. Two independent colonies were
grown on SD agar plates lacking tryptophan and leucine, but containing X-gal, prior to assessment of b-galactosidase activity. Blue coloration of
colonies is a marker of interaction. Full length BLM is also shown, with a red bar indicating its conserved helicase domain, a blue bar indicating
RQC and a black bar indicating the HRDC domain. Interactions between a given bait/prey pair were quantified by measurements of b-galactosidase
activity. Values represent means�SD of three independent experiments. (B) Mapping of the p12 interaction region. The L40 yeast strain was
co-transformed with plasmids encoding the indicated p12 fragments fused to LexA-DBD and full length BLM fused to Gal4-AD. In both (A) and
(B) the sequence boundaries of deletion mutants tested are shown with the corresponding amino acid positions indicated on the right. Values
obtained from liquid b-galactosidase assay are shown on the right and represent means� SD of three independent experiments.
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The effect was concentration-dependent and reproducible
using various molar ratios of BLM and hPOLd or p12
(1 : 0.8–1 : 3.9, Supplementary Figure 3 and data not
shown; 1 : 23.5, Figures 4C, D and 5). The initial linear
part of the progress curves permitted us to approximate
the initial velocity of the reaction. Depending on the
molar ratio of hPOL d or hp12 and BLM, we saw a 2–15
times increase in the initial velocity of unwinding
(Supplementary Figure 3, and data not shown).

This result prompted us to test the effect on BLM activ-
ity of the tightly-defined interacting region of p12. For
this, two peptides were chemically synthesized: p1230–60

covers the BLM-binding region, while p1271–100 maps to
a region of p12 that shows no BLM-binding, as revealed in
the YTH mapping studies (Figure 2B). Full-length p12
and p1230–60 showed a similar degree of stimulation of
BLM activity in a time-course experiment. In contrast,
p1271–100 had no effect on BLM helicase activity

(Figure 5A and B). Taken together, these results confirm
that the helicase activity of BLM is stimulated by hPOL d,
and that this stimulation is dependent on the binding
between the two proteins through amino acid residues
30–60 in the p12 subunit of hPOL d.

BLM increases the strand displacement activity of hPOL d

Given the data described earlier indicating that hPOL d
has a significant stimulatory effect on BLM helicase activ-
ity, it was important to examine whether BLM affects the
polymerase activity of hPOL d. To that end, we performed
primer extension assays (Figure 6). hPOL d-specific poly-
merization activity was monitored by visualizing extension
of a 50-end labeled 18-mer primer on an 85-mer DNA
template, which contains an X-junction at the 30end.
This template was chosen because we wanted to examine
whether BLM can help hPOL d to traverse X-junction at
the end of template. We observed that hPOL d alone
was able to incorporate dNTPs up to the start of the X-
junction structure (Figure 6, lane 2). The inability of
hPOL d to extend the primer beyond the pause site indi-
cates that the X-junction structure effectively blocked pro-
gression of hPOL d along the template strand.
When BLM was added to the reaction in concentrations

giving molar ratios of 1.5–7.5 times that of the hPOL d
concentration, we observed an increase in both the
amount of primer extended and the maximal length of
product (Figure 6, lanes 3–5) such that the longest prod-
ucts represented polymerization extending 5 nt beyond the
position of the X-junction. This effect was similar to that
produced by PCNA, although the degree of stimulation of
hPOL d by PCNA was more pronounced (Figure 6, lanes
7–9). Importantly, BLM alone showed no polymerase
activity (Figure 6, lane 6). The stimulatory effect of
BLM on hPOL d was found to be specific, as another
member of the RecQ helicase family, E. coli RecQ, had
no effect on hPOL d (Figure 6, lane 10). In order to test
whether BLM had a stimulatory effect on hPOL d poly-
merase activity per se we performed primer extension
assay using a more conventional DNA substrate compris-
ing a 72-nt long template and a 17-nt primer. As shown in
Supplementary Figure 4, we found that BLM does not
stimulate hPOL d polymerase activity on such a DNA
template.
Altogether, these results indicate that BLM does not

stimulate hPOL d polymerase activity but, similar to
PCNA, BLM promotes strand displacement by hPOL d.

BLM and hPOL d partially co-localize in vivo in response
to perturbation of DNA replication

The in vitro studies described earlier prompted us to ana-
lyse whether hPOL d and BLM might interact in vivo. As
indicated earlier (Figure 1D), BLM and hPOL d could be
co-immunoprecipitated from 293T cells only after HU
treatment, which suggested that the interaction is either
S-phase specific or induced specifically in response to per-
turbation of replication. To differentiate between these
possibilities, we addressed whether BLM and hPOL d
co-localize either in unperturbed, cycling cells or in cells
blocked with HU. For this, GM00637 (BLM proficient)

Figure 3. The hPOL d enzyme specifically stimulates the BLM-
mediated unwinding of the replication fork substrate in a concentra-
tion-dependent manner. (A) A total of 1.3 nMBLM was pre-incubated
with the exonuclease-defective hPOL d enzyme in various concentra-
tions (33.5, 16.8, 8.4, 4.2, 2.1, 1 and 0.5 nM; lanes 6–12, respectively) on
ice for 3min, and the samples were then warmed to 378C. The unwind-
ing reaction was initiated immediately by the addition of substrate and
ATP. Flame symbol depicts heat-denatured substrate (lane 2), or BLM
incubated with heat-denatured hPOL d enzyme at the highest concen-
tration of the titration range (33.5 nM; lane 5), as described earlier. (B)
Quantification of data presented in (A). Data were normalized to the
non-treated (lane 1, taken as 0%) and boiled (lane 2, taken as 100%)
samples. Maximal stimulation (at 6 times above BLM basal helicase
activity) was achieved with a 13�molar excess of hPOL d.
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human fibroblast cells were plated on coverslips and
treated with 2.5mM HU for 18 h, sufficient to block repli-
cation, as evidenced by the depression of BrdU incorpora-
tion into the nuclei (not shown). A control culture was
incubated in parallel without HU treatment. In both sets
of cells, BrdU was added to a final concentration of 25 mM
5min before the cells were fixed. The fixed samples were
stained for the presence of hPOL d, BLM and BrdU, as
described in Materials and methods section. To detect
hPOL d were restricted in our use of antibodies, because
our antibody to p12 did not work in immunofluorescence
analysis. Hence, we chose an antibody against the catalytic
subunit p125, which directly interacts with p12
(Figure 1D, lanes 3 and 4). As expected from previous
analyses, BLM and hPOL d showed a punctate nuclear
pattern of localization (15,25,34). Representative images
of the staining patterns are depicted in Figure 7A and B.
The degree of co-localization of nuclear foci was
then scored. This analysis indicated a low degree of co-lo-
calization in an untreated asynchronous cell popula-
tion, which increased in response to HU treatment
(Supplementary Figure 5). This increase in the extent of
co-localization might be restricted to S phase or might be
an effect of the HU-induced replication perturbation. To
address this, we took advantage of the BrdU labeling of
the actively replicating cells. When only the BrdU-positive

subpopulation was scored in the untreated cultures,
the degree of co-localization was similar to that of the
whole asynchronous population. These results suggest
that BLM and hPOL d co-localize only to a limited
extent in vivo, even during an unperturbed S phase, but
that perturbation of DNA replication causes an increase
in their co-localization. Nevertheless, even after treatment
of cells with HU, most BLM and hPOL d foci still did not
co-localize, indicating that a significant fraction of BLM
remains distant from sites of stalled replication forks.

DISCUSSION

We have shown that the BS helicase, BLM and the major
replicative DNA polymerase, hPOL d, interact specifically
in vitro and in vivo. This interaction is direct and is
mediated via the thus far poorly characterized p12 subunit
of hPOL d. We mapped the site of interaction of BLM
with p12 to a region representing amino acids 447–770.
This fragment includes the N-terminal part of the BLM
helicase domain and it has been shown previously that this
is involved in interaction with the WRN helicase (35). In
addition, we mapped the region of p12 that interacts with
BLM to a short fragment comprising amino acids 30–60.
Database searches revealed that this p12 fragment does
not represent any known conserved protein domain and

Figure 4. The small subunit of the hPOL d enzyme, p12, is sufficient to stimulate BLM helicase activity. (A) A total of 1.3 nMBLM was pre-
incubated with various concentrations of p12 (1609, 804.5, 402.25, 201.13, 100.56, 50.28, 25.14, 12.57, 6.29 and 3.14 nM; lanes 6–15, respectively) on
ice for 3min, and the samples were then warmed to 378C. The unwinding reaction was initiated immediately by the addition of substrate and ATP.
Controls and symbols are as in Figure 3. (B) Quantification of data from (A). (C) A total of 0.85 nM BLM was incubated at 378C for 5min alone
(lanes 1–9), or with 20 nMhPOL d (lanes 10–18), or 20 nM p12 (lanes 19–27). The unwinding reaction was then initiated by the addition of ATP and
substrate. Samples were withdrawn at the time points indicated above the lanes. (D) Quantification of data from (C).
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that it shows no sequence homology to any known BLM
interacting partner. Of most importance, we have also
shown that BLM and hPOL d can functionally associate
in that their interaction leads to stimulation of the BLM
helicase activity and hPOL d strand displacement activity.

There are a number of possible scenarios in DNA repli-
cation/repair where the productive co-operation of BLM
and hPOL d might be advantageous. Perhaps the most
plausible is during the process of fork regression under
circumstances where a replication fork is arrested by a
DNA adduct or another blockade, particularly those
that block leading strand synthesis. We have shown
recently that BLM can promote the regression of a
model replication fork in vitro (36). This may be a reaction
that is beneficial for DNA repair simply because, through
promoting fork back-tracking, it allows access to the
blocking ‘lesion’. However, there is also potential for
fork regression to be important in a lesion bypass pathway
of DNA damage tolerance. If the lesion blocks leading
strand synthesis, it appears that the synthesis of the

Figure 5. The stimulatory effect of p12 can be localized to a small
peptide, spanning the region that binds BLM. (A) A total of 0.85 nM
BLM was incubated at 378C for 5min alone (lanes 1–9), or with 20 nM
p1271–100 (a peptide that shows no binding to BLM; lanes 10–18), full
length p12 (lanes 19–27) or p1230–60 (a peptide that spans the binding
region to BLM; lanes 28–36). Reactions were run as in Figure 4B.
(B) Quantification of data from (A).
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Figure 6. BLM stimulates hPOL d strand displacement activity. (A) Ten
nanogram of hPOL d alone (lane 2) or in the presence of an increasing
amount (10, 20 or 50 ng) of BLM (lanes 3–5), PCNA (lanes 7–9) or 50 ng
of E. coli RecQ (lane 10) were tested in primer extension assays using the
X-poly DNA template as described in Materials and methods section.
Eighteen-nucleotide primer was 50 end labeled. Lane 6 contains 50 ng
of BLM alone and shows that BLM does not have DNA polymerase
activity. Lane 1: substrate alone; positions of oligonucleotide size-
markers are indicated. Schematic representation of the X-poly DNA
template is shown. The limit of extension is indicated with the arrow.
(B) Quantification of products longer than 34 nt from (A).
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lagging strand may continue for some distance ahead of
the site of the blocked leading strand. This apparently
futile uncoupling of leading and lagging strand synthesis
has the potential, after fork regression, to permit template
switching with the shorter leading strand being extended
by copying of the longer lagging strand template. In this
way, once the regressed fork is reset, the leading strand
would be extended beyond the site of the lesion and
normal DNA replication could commence. hPOL d
might both recruit BLM to stalled forks and then stimu-
late its catalytic activity once there. Conversely, BLM
might play a role in assisting hPOL d to access the
regressed ‘4th arm’ and catalyse extension of the leading
strand.
It has been suggested that RecQ helicases together with

the type 1A topoisomerase, Top3, act at damaged replica-
tion forks to resolve recombination structures likely

resulting from template switching (37). We suggest that
BLM plays a dual role in rescuing arrested replication
forks. One function is in assisting POL d to bypass
DNA lesions via fork regression and template switching,
and the second function of BLM is to resolve the resulting
pseudo double Holliday junction with a help of Top3.
These two functions of BLM may be independent of
each other.

A striking feature of the ability of hPOL d to stimulate
the helicase activity of BLM was our finding that a short
peptide (aa 30–60) representing the minimal binding
region of p12 is as efficient in this stimulatory role as is
the hPOL d enzyme. This would seem to rule out many
possible mechanisms for the stimulation, including recruit-
ment of BLM to the DNA substrate. Instead, these results
argue for hPOL d acting to alter the conformation of
BLM in such a way as to enhance its helicase function.

Figure 7. Dual staining for BLM and hPOL d suggests co-localization in vivo, which is stimulated during replicative stress. (A) GM00637 cells were
arrested with 2.5mMHU, and were stained as described in Materials and methods section. A representative image showing punctate BLM (green,
left) and hPOL d (red, second from left) staining. Coincidence of the green and red signals (yellow signal) suggests co-localization of the two proteins.
The right panel shows the nucleus of the same cell stained with the DNA dye Hoechst 33258. (B) GM00637 cells grown on coverslips without HU
treatment and were pulse-labeled with 25 mM BrdU for 5min, and then stained as described in Materials and methods section. Representative images
show staining of the same nucleus for BLM in green (top left), for hPOL d in red (top, second from left), for BrdU in blue (top, second from right).
Phase contrast image of the same nucleus is depicted on the top right. In the bottom row, combined images of the individual stainings from the top
row are shown. As expected, the BrdU signal correlates well with the signal for hPOLd (magenta-color pattern second panel from bottom right). The
coincidence of BLM signal with either BrdU (cyan signal in bottom left) or hPOLd (yellow signal in second panel from bottom left) is less
pronounced.
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Such a mechanism is further supported by the unusual
reaction progress curves: after an initial burst of activity
the reaction very quickly reaches its maximum without
attaining 100% unwinding. Unwinding by helicases is
believed to be a multi-step process: (i) changes of the qua-
ternary structure of the enzyme alter its binding specificity;
(ii) the enzyme binds to the substrate with an increased
affinity; (iii) DNA binding initiates ATP hydrolysis; and
(iv) unwinding commences. Under our single turnover
unwinding conditions, we postulate that the rate-limiting
step is the activation of the helicase. We postulate that
hPOL d facilitates these structural changes, and when
the enzyme is mixed with its substrates (DNA and ATP)
it is already in its active conformation ready to initiate
unwinding immediately upon binding. Furthermore,
hPOL d also increases the extent of unwinding by BLM.
This increase might be a consequence of increased proces-
sivity of the helicase, which in turn might also be the result
of conformational changes initiated by hPOL d. A major
goal for the future will be to characterize in molecular
detail how exactly this stimulation occurs, and how this
short peptide can have such a marked effect on the BLM
helicase.

Our data indicate that BLM and hPOL d do not signifi-
cantly co-localize in the nucleus of human cells under
normal growth conditions, including within an unper-
turbed S phase. This is consistent with the known localiza-
tion of BLM to PML bodies and not to sites of ongoing
replication. However, we were able to detect a consistent
increase in the percentage of nuclear BLM foci that co-
localize with hPOL d when cells were treated with HU.
Taken together, these data indicate that this association
at replication foci is driven by replication perturbation
and not by cell-cycle phase per se. To support these results,
we could show direct association of BLM with the p12
subunit of hPOL d in vivo in cells which were synchronized
in S phase by HU treatment. No interaction between BLM
and p12 could be observed in unsynchronized cells. Our
data showing that BLM and p12 co-immunoprecipitate
from the nuclear extracts of the 293T cells after treatment
with 1mM HU seemingly contrast with the recent data of
Zhang and colleagues (38), who reported that, in HeLa and
293T cells, p12 undergoes ubiquitination and degradation
20 h after the treatment with 2mMHU. These differences
are possibly the result of the different HU concentrations
that have been employed in these two studies.
Alternatively, it may well be that binding of BLM to p12
prevents p12 ubiquitination and degradation, which is the
reason why we did not observe degradation of p12 in our
experiments.

We have also shown that BLM, similar to PCNA
(39,40), promotes the strand displacement activity of
hPOL d. BLM might help hPOL d to traverse short
regions of DNA secondary structure during the process
of DNA replication, but we have no direct evidence for
this and such a possibility still needs to be investigated.
However, we could not observe any effect of BLM on
hPOL d polymerase activity on a simple primer/template
substrate. It has been shown previously that WRN has a
stimulatory effect on the polymerization activity of
Saccharomyces cerevisiae POL d in the absence of

PCNA (41). However, WRN does not apparently have
an effect on DNA synthesis catalysed by the POL
d-PCNA complex. These results suggest that WRN may
not function in processive DNA synthesis reactions during
normal DNA replication; instead, WRN may function in
replication restart of stalled or collapsed replication forks
from which the replication machinery has dissociated (41).
Our current hypothesis is that BLM may, in a similar

manner to WRN, be involved in replication restart of
stalled replication forks blocked by DNA damage or unu-
sual secondary structures in DNA template (42). One such
scenario is during the replication of ribosomal DNA in the
nucleolus. Similar to telomeres, ribosomal DNA is GC
rich and can adopt alternative DNA structures such as
hairpins and G-quadruplexes. These structures are effi-
ciently resolved in vitro by BLM and WRN (13,43–45).
When overexpressed in HeLa cells, WRN can recruit the
p50 and p125 subunit of hPOL d from nucleoplasm to the
nucleolus (46). In an unperturbed cell cycle, BLM is found
primarily in PML nuclear bodies, except during late S
phase when it co-localizes with WRN in the nucleolus
(16). Additionally, BLM binds to ribosomal DNA and
primarily at the non-transcribed spacer region where repli-
cation forks initiate (47). These findings suggest that BLM
may be directly coupled to replication fork initiation
and/or progression at particular sites of DNA synthesis.
The fact that BLM and hPOL d co-localize more promi-
nently after blockade of replication, but that not all repli-
cation foci contain BLM under these conditions, suggests
that BLM may be recruited to sites of DNA synthesis only
in response to the formation of a particular DNA struc-
ture that needs BLM helicase function for its resolution. It
will be interesting to address in the future whether BLM is
recruited to hPOL d foci only following posttranslational
modification of one or both of these factors, or whether
the association is mediated by other replication factors to
which BLM binds, such as RPA (21).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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