Computational aspects of expression data
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Abstract Several experimental tech-
niques are available nowadays to study
the spectrum of genes expressed in a
cell at a specific moment. Typically,
such methods generate large amounts
of expression data that may be hard to
interpret. Here we review computa-
tional questions and approaches result-
ing from the various experimental
techniques.

Abbreviations EST Expressed sequence
tags - SAGE Sequential analysis of gene
expression

Introduction

In order to understand the workings of
aliving cell, knowledge of the spec-
trum of genes expressed at a given
time, or under certain conditions, as
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under the influence of specific drugs,
should prove instrumental. Such infor-
mation can aid in the understanding of
generegulation, for example, or in un-
derstanding the changes that occur in
disease. Further insights from the iden-
tification of new genes associated with
certain diseases may also be gained. In
fact, the study of differencesin gene
expression has become a standard
method in the search for genes that
might be of medical or pharmaceutical
relevance. Such studies may focus, for
example, on the differencesin gene
expression between normal and cancer
cells[1].

Current studies of global mRNA
expression levels (transcriptome analy-
sis) aswell asthe study of the prote-
ome, i.e. the total protein contents of a
cell, are undergoing rapid develop-
ment. While the amount of mRNA in a
cell at agiven moment does not guar-
antee the precise prediction of amounts
of subsequently produced protein,
MRNA can nevertheless serve asan in-
dicator that a certain protein is being
produced, especially when sudden
changes, as opposed to steady-state
conditions, are analyzed. Although
studies have shed doubt on a quantita-
tive correlation between mRNA and
protein levels[2], they nevertheless
underscore the importance of MRNA
processing in regulating protein levels.
We will choose to ignore such matters
for the moment and focus on methods
to compare and determine transcript
levels so as to consider the computa-
tional problems posed by such data.

Typically, analytical techniques for
gene expression result in large amo-
unts of data that are hard to interpret
without computational methods. How-
ever, the kinds of large scale experi-
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ments described below require very
careful analysis because biological sig-
nals may be obscured by experimental
noise and other systematic influences
arising from experimental methodolo-
gies.

Experimental techniques

Several techniques are currently in use
to study levels of expressed mRNA. In
terms of the data they produce we be-
lieve it isimportant to distinguish from
among methods that specifically com-
pare two populations of MRNA, meth-
ods that precisely count how many
molecules of a particular species are
present in a sample, and methods that
read the mRNA contents from the
strength of a hybridization signal.

Subtractive methods compare two
MRNA populations.This class of meth-
od includes techniques like representa-
tional difference analysis[3] and dif-
ferential display [4]. Theresults are
rarely quantitative but may allow for
the identification of interesting new
genes. Tag sequencing of identified
MRNA representatives will frequently
reveal the same sequence and therefore
additional hybridization may be neces-
sary in order to differentiate from
among various clones. The microchip
hybridization method devel oped by Pat
Brown [5] labels two populations with
different fluorescent dyes and then hy-
bridizes them to arrayed clones. Thus,
in asense, one may also categorize it
under the heading of subtractive meth-
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ods. In principle, any comparison be-
tween two mRNA populations can be
derived if the composition of eachis
given, which iswhat the other two
strategies are aiming at by characteriz-
ing agiven population.

Tagging. Given amethod to determine
certain tags on amRNA, like a stretch
of sequence at either end of the mole-
cule, one can then count the numbers
of molecules carrying the sametag.
For example, expressed sequence tag
(EST) sequencing of alibrary will
yield the same sequence repeatedly.
The multiplicity at which a certain se-
guence Occurs upon sequencing may
serve as an indicator of the number of
molecules of this species present in the
population. Data quality and reliability
strongly depend on the method for se-
lection of tags for sequencing and on
the chance that identical MRNAs will
produce the same tag sequence. Gener-
ally, in order to obtain areliable esti-
mate of the frequency of a certain
MRNA, rather large numbers of clones
need to by typed. The same holds for
the SAGE (Sequence Analysis of Gene
Expression) method [6] where short
tags are ligated into one long consecu-
tive sequence prior to sequencing.
While for EST sequencing and the
SAGE method identity between tagsis
easily determined, this does not hold
true for a third approach based on the
use of oligonucleotide fingerprints as
tags[7, 8]. Hybridization of aclone
with a set of oligonuclectidesyields a
vector of hybridization signals which
may, due to experimental noise, not be
identical for identical clones. As op-
posed to the sequencing based meth-
ods, however, oligomer fingerprinting
produces information from the entire
length of a sequence. In all the above
techniques, thereisarisk of identical
tags being derived from different
MRNAS.

Hybridization methods. Two hybrid-
ization methods provide semi-quantita-
tive data by correlating hybridization
signa strength to the amount of mMRNA
in a population. In one approach,
cDNAs or PCR-products are immobi-
lized either on afilter array or aglass

chip and hybridized with the mRNA
population [5, 9]. In arather similar
approach, differing mainly in the tech-
nique of placing the target sequences
on the chip, high density arrays of oli-
gonucleotides are used for hybridiza-
tion [10]. Both methods generally pro-
vide good, reproducible correlation be-
tween the amount of mMRNA present
and the signal strength.

Computational profiling

Subtractive methods directly answer
the question as to which transcripts oc-
cur in one and not in the other of two
given libraries. Ensuing questions con-
cerning the biological interpretation of
results will require sequencing of a
number of clonesin consultations with
sequence databases. This effort will be
the more rewarding the better the ac-
companying sequence analysisis.
Known segquences and motifs will
thereby aid in functional predictions,
athoughitislikely that even after
careful analysis some sequences will
remain for which comparisons provide
no clue asto their role.

Tagging methods implicitly sug-
gest that the number of clones carrying
the same tag in relation to the total
number of clonesis representative of
the fraction of that speciesin the popu-
lation. However, certain qualifications
need to be mad e. The situation issim-
ilar to one where afisherman catches
100 fish out of alake and finds that
one of them is acarp. Does thisimply
that 1% of fish in the lake are carps?
Or conversaly, if 1% percent of fishin
the pond are carps, does this make it
highly likely that the fisherman would
find exactly one carp among his 100
fish? Thisis particularly important sin-
ce there is the danger that the sample
may contain no carp at al which does
not justify the conclusion that there are
no carps in the pond.

The answer can only be givenin
the language of probability. Suppose
the pond holds a very large number of
fish of which 1% percent are carps.
Although the probability of having so-
me specific number of carpsin the
sample should be computed according

to a hypergeometric distribution [11
Section 11.6], in the case of a sample
size much below some large number of
fish in the pond one may instead use
the simpler binomial distribution [11,
Sections11.11 and V1.10]. In this case,
the probability of finding exactly one
carp among 100 fish is 36.97%. How-
ever, the probability to observe no carp
at all is 36.6%, too. The chancesto
find 2 or 3 carpsin the sample are
18.5% and 6% respectively. Thusthe
probability not to observe a certain
species (of fish or mMRNA) may be dis-
turbingly high. For example, for a spe-
cies that constitutes 0.5% of the popu-
lation one needs a sample of size 460
before the probability of not observing
this species at al decreases to below
10%. For a speciesthat constitutes
0.1% of a population the correspond-
ing minimal sample sizeiswell above
2000. Figure 1 shows a plot of the
probabilities of no observation of a
certain speciesin samples varying in
size from 1 to 1000. Each curve corre-
sponds to a specific fraction at which
the species occurs in the population.
This shows how difficult it isto assess
the precise meaning of the counts of
tags for one species and how danger-
ous it is to make deductions about |ow-
copy number transcripts.

When an mRNA population is hy-
bridized to afilter, micro array, or chip
the ability to detect low-abundance
species depends on the detection meth-
od rather than on chance. For thisrea-
son, miniaturization and the use of
support media other than nylon filter
are crucial. Because of asmall surface
area, the probe concentration can be
made high, even from limited amounts
of sample material, which immediately
translates into improved hybridization
and thus better performance. Concom-
itantly, inert support materials produce
low background, again leading to in-
creased sensitivity and accuracy. Irre-
spective of the actual detection device,
whether general purpose imaging de-
vise or specia equipment for the mi-
crochips, image analysis software may
become a bottleneck in extracting this
information from the experiment.
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Fig. 1 Probability not to observe a certain speciesin asample that is taken out of alarge
pool of mMRNASs. The curves correspond to species constituting 1%, 0.5%, and 0.1% of the
entire population. For example, as pointed out in the text, it takes a sample size of 460 for
the 0.5%-curve to fall below 10%. If a species constitutes 0.1% of the population in the
pool -which is still quite high in terms of mRNA contents — the corresponding curve falls
off very slowly, and extremely large numbers need to be sampled. Since the overall num-
ber of MRNASs is assumed to be much larger than the sample size, the binomial approxima-
tion to the hypergeometric distribution has been used to compute these numbers

Comparing two experiments

Both tag sequencing and hybridization
methods will eventualy lead to a
quantification, however approximate,
of the expression level of each mRNA
speciesin one or several populations.
The simplest type of question to ask
for two populationsis, “Which
MRNASs are either specific or arein-
creased or decreased in one of the ex-
periments?’ Thisis easily approached
by simply plotting each set of values
on an axis of atwo dimensional coor-
dinate system [9, 12]. The resulting
correlation plot gives agood visual im-
pression of the relationship between
the two expression profiles. Dueto the
inaccuracies of the data generation and
dueto real fluctuations of MRNA lev-
elsit will, however, only be possible to
detect fairly large changes. Subtle
changes will hardly be distinguishable
from random noise.

While the correlation plot is easy
to interpret visualy, it is nhot obvious
how to assess the statistical signifi-
cance of achange in expression level
of a particular gene. For the tagging
methods which are able to count mole-
cules from a sample, there is some sta
tistical theory to apply here. Audic and
Claverie [13] derive asignificance for-
mulafor an observed change in the
number of MRNAS of a certain species
intwo libraries. A simpler approach,
and according to Audic and Claverie a
conservative one, is the Fisher exact
test, originally designed for two-way
contingency tables[14].

Analysis of several experiments

It isfar less obvious how to study sev-
eral expression profiles simultaneous-
ly. Several questions arise with regards
to such data: are there groups of exper-
iments where certain genes can be ex-
pected to undergo the same changes?

Given prior knowledge asto the clus-
tering of experimentsinto groups, is
there an indication that the expression
profiles mirror this classification? Are
there predictive factors in the expres-
sion profiles? Can expression profiles
be monitored in a time-dependent
manner?

In general, multiple expression pro-
files may be summarized as a matrix,
with rows being experiments (cdlls,
tissues, time points) and the columns
corresponding to the genes. An entry
in the matrix reflects the expression
level of the particular gene in the par-
ticular cell. Thus, onerow is represent-
ed by itstranscript profile which isa
vector with as many dimensions as
there were genes or clones assessed.
This number may be fairly high, like
some 6,000 for the yeast genes, for ex-
ample, or the approximately ten times
larger number of genesin mammalians.

The fundamental problem hereis
that one would need to visualize many
dimensions simultaneously in order to
comprehend all information. Several
statistical techniques have been devel-
oped for the analysis and visualization
of high-dimensional data and the hope
isthat some of these will prove fruitful
in the context of expression data. For
this purpose, we proceed to sketch a
few approaches. Of course, any tech-
nigque chosen needs to reflect the un-
derlying biological question. For ex-
ample, different methods will be used
for the analysis of profiles that reflect
adevelopment in time and for the stu-
dy of changesin adiseased organ.

In one generic method of visualiz-
ing high dimensional data one repre-
sents each dimension as one of many
vertical linesin aplane [15], such that
each vertical line corresponds to a ge-
ne and the expression level of that ge-
ne corresponds to a certain height on
that vertical line. The visual impres-
sion is created by linking all those
marks on adjacent lines that come
from the same row (experiment) of the
data matrix. One might also link from
[eft to right those marks that belong to
the same experiment in a specific color
and thus distinguish the rows of the
data matrix by color. The expectation
isthat one will be able to pick out
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Fig. 2 Examplefor parallel lines depiction of expression strength based on fictitious data.
The expression levels for three genes in seven experiments A to H are shown. The obvious
interpretation would be that all three genes behave very similarly in experiments D, E, F,
G, and possibly alsoin A, while they differ in experiments B and C

groups of experiments displaying simi-
lar profiles by eye or that outliers
might be spotted.

Any visual impression will be de-
pendent on the order of the lines. For
an experiment representing atime
course the order is naturally given,
while without this information differ-
ent arrangements need to be tested.
Certainly, there are clear quantitative
[imitsto this method. While it may be
helpful for the study of, say, 20 genes,
20,000 paralld lines with expression
levels on them will be hard to interpret.

A classical dataanalysistool is
multidimensional scaling. In this ap-
proach, alow dimensional (generally a
2- or 3-dimensional) projection of the
original higher-dimensional datais
computed. This projection is chosen
such that clustering and spread in the
original data are maintained asfar as
possible. Typically, the image generat-
ed by this projection gives agood im-
pression of the rough clustering among
the data points. Thus, one would expect
to find experiments near to each other
where the expression levels of the ge-
nes tend to be very similar to each oth-
er. The work by Spanakis and Brouty-
Boye [16] uses such an approach. Pro-
jection methods may also be used to
derive classifiers, i.e. decision criteria
as to which predetermined group a new
transcript profile belongs to. In some
instances even trees may congtitute a
meaningful way of summarizing and
interpreting the data. Carr et al. [17,

18] apply treesto represent a clustering

of expression profiles. Thisisinline
with classical data analysis where trees
are used to represent a hierarchic clas-
sification. In the study of evolution, trees
not only represent grouping but also
summarize development. This aspect is
stressed in the work of Gawantka et al.
[19] who fit atree structure to expres-
sion data taken from in situ hybridiza-
tion in Xenopus embryos. The result-
ing tree describes to a certain extent the
differentiation process by which the
tissues devel op from a small number of
embryonic cells.

The representation of several tran-
scription profiles as a data matrix al-
lows one to interchange rows and col-
umns. Indeed, interesting questions
may be posed when the data matrix is
used to cluster genesinstead of experi-
ments. When sequences or functions
are available for the genes, one may
study the degree to which profile-based
clustering agrees with a sequence or
function-based clustering. For exam-
ple, Gawantka et a. [19] found inter-
esting functional correlations among
genesthat clustered together according
to their expression levels. This duality
between rows and columns of the data
matrix promises to open many interest-
ing routes of theoretical inquiry.

Discussion

Expression profiling analysisisan
emerging field that exemplifies the
growing interdependancy between ex-

perimental techniques and data analy-
sis. The tighter the feedback loop
beween bioinformatics and experiment,
the more fruitful this approach will be.
Itisvery unlikely that we have men-
tioned al the conceivable applications
and options in analyzing expression
profiles, especially since actual appli-
cations vary so widely. For instance,
algorithms appropriate for observa-
tions of steady-state cultures might not
be the most useful for the evaluation of
data resulting from a sudden change in
culture conditions, and vice versa. An-
other example is the difference, and
the conseguences thereof, between
studies that aim at merely matching
hybridization patterns, as for the iden-
tification of similarly acting drugs, and
really quantitative analyses. In any ca-
se, the amount of datawill be such that
new and yet unthought means need to
be developed to deal with them and,
even more importantly, to allow appro-
priate use of the information. The full
potential of thistype of analysis, espe-
cialy with regard to the unraveling of
regulatory pathways, will only become
available with the ability to distinguish
relevant from irrelevant data, in ade-
velopment that looks not too different
to the advance from the initial analysis
of monogenic diseases to the identifi-
cation and isolation of al genesin-
volved in multigenic treats.

For all its merits, one should keep
in mind that the mere transcriptional
information will permit what soon will
be perceived as arather limited analy-
sis, providing pieces to the puzzle. On-
ly when merged with appropriately
matched data on promoter activity and
actual protein expression, a more com-
prehensive analysis of the complex
and interacting regul ative factors will
become possible, even on this relative-
ly low molecular level. Other impor-
tant effectors such as the consequences
of post-trandlational activity or thein-
fluence of cell compartmentalization,
for example, will still not be included.
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