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In a solid-phase immunoassay, binding between an antigen and its specific antibody takes place at
the boundary of a liquid and a solid phase. One of the reactantssreceptord is immobilized on a
surface. The other reactantsligandd is initially free in solution. We present a theory describing the
kinetics of immunochemical reaction in such a system. A single essential restriction of the theory is
the assumption that the reaction conditions are uniform along the binding surface. In general, the
reaction rate as a function of time can be obtained numerically as a solution of a nonlinear integral
equation. For some special cases, analytical solutions are available. Various immunoassay
geometries are considered, in particular, the case when the reaction is carried out on a microspot.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1927510g

I. INTRODUCTION

The detection of a given protein in a liquid sample is a
routine problem in experimental biology. One of the most
preferred and efficient tools developed for this purpose is the
immunoassay technique, which makes use of the high affin-
ity of antigen–antibody pairs.1,2 In a solid-phase immunoas-
say, the liquid sample containing one of the reagentsssay,
antigend is put in contact with a solid surface, where the
other reagentsantibodyd is immobilized. From the intensity
of the immunochemical reaction in this system, one can es-
timate the initial concentration of the antigen in the sample.
A new and very promising trend in this field is the microar-
ray immunoassay, where the liquid sample is simultaneously
in contact with a large numbersup to several thousandsd of
antibodies arranged in an array of individual microspots.
Thus, the protein profile of a sample can, in principle, be
obtained very quickly. Unfortunately, this technique is far
from well established, although many research efforts are
currently being made in this direction. In many recent pub-
lications, the sensitivity of the microarray immunoassays ap-
pears considerably lower than expectedsfor review see, e.g.,
Refs. 3 and 4d. The reason for this may lie in the fact that the
experiments are designed without solid theoretical back-
ground.

The kinetics of solid-phase immunoassays and related
problems have been a subject of many theoretical studies.5–10

However, most theories deal with either the initial phase of
the reaction or the steady-state regime. In the present paper,
we suggest a more generalsalthough sometimes less precised

theoretical approach, in the framework of which both the
initial behavior and the steady-state kinetics are considered
as particular cases.

II. GENERAL THEORETICAL CONSIDERATIONS

A. Basic equation

In general, we wish to describe a chemical reaction at
the boundary of a liquid and a solid phase. One of the reac-
tants, called receptor, is immobilized on a surface. The other
reactant, called ligand, is initially free in solution. The ligand
can bind to the receptor at 1:1 stoichiometry. The problem is
to find the amount of the ligand bound to the receptor as a
function of timet.

Let N be the total number of molecules of the receptor
andBstd the number of bound molecules of the ligand. The
reaction rate is

Ḃstd = k+fN − BstdgcLstd − k−Bstd, s1d

wherek+ andk− are the intrinsic association and dissociation
rate constants, respectively, andcLstd is the local concentra-
tion of the ligand solution at the reaction surface. Here and
further, a dot above a symbol denotes differentiation with

respect to time:Ḃstd=dB/dt. As implied by Eq.s1d, we as-
sume that the reaction conditions do not depend on the po-
sition on the surface.

In order to make use of Eq.s1d, we should express the
quantitycLstd through the functionBstd. For this purpose, we
introduce a “memory” functionGstd in the following way.
Imagine a deactivated molecule of ligand that cannot bind to
the receptor, but retains all the original transport properties.
Suppose that at time zero it is positioned somewhere at the
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reaction surface, the area of which we denote bys. We de-
fine the quantityGstdsdx as the probability to find such a
molecule within an infinitesimally small distancedx from the
reaction surface at the timet. In other words, the memory
function Gstd is the local concentration of a single deacti-
vated molecule that starts from an arbitrary point of the re-
action surface.

Let c be the initial ligand concentration. Imagine that, in
addition to the usual course of the reaction,deactivatedmol-
ecules of the ligand are created at the reaction surface with

the rateḂstd. Then the total local concentration of all ligand
molecules sactive and deactivatedd will remain constant
and equal toc. The local concentration of deactivated mol-
ecules can be expressed as a convolution integral

e0
t Gst− t8dḂst8ddt8, which we will further denote by

Gstdp Ḃstd. Hence, the local concentration of the active mol-
ecules is

cLstd = c − Gstd p Ḃstd. s2d

Substituting this expression into Eq.s1d and dividing the
latter byN, we obtain

ẇstd = k+f1 − wstdgfc − NGstd p ẇstdg − k−wstd, s3d

wherewstd=Bstd /N is the fractional occupancy of the recep-
tor binding sites. This is our basic kinetic equation. The
transport processes are taken into account through the func-
tion Gstd, which will be explicitly found for some particular
systems in Sec. III. In the present section we will concentrate
on the general analysis of Eq.s3d, assumingGstd to be
known. Note that, for sufficiently larget, this function ap-
proaches 1/V, whereV is the volume of the ligand solution.
Therefore it is convenient to introduce an auxiliary function
Hstd defined in the following way:

Gstd = 1/V + Hstd/V. s4d

It is obvious thatHstd→0 as t→`. In terms ofHstd, the
basic kinetic equation can be rewritten as

ẇstd = k+f1 − wstdgfc − nwstd − nHstd p ẇstdg − k−wstd,

s5d

wheren=N/V is the would-be volume concentration of the
receptor if it were detached from the reaction surface. In
deriving Eq.s5d we used the fact that 1p ẇstd=wstd.

B. Limiting value of the fractional occupancy

In the limit t→`, the system reaches dynamic equilib-
rium sw=constantd, and Eq.s5d reduces to

0 = k+s1 − wdsc − nwd − k−w. s6d

This quadratic equation with respect tow has two different
positive real roots. We denote them asw1 andw2, assuming
that w1,w2. The limiting value of the fractional occupancy
wstd is, of course, the lowest root,w1. sThe other one,w2, is,
in fact, always greater than unity.d Further in this paper, we
will keep the notationw1 for the equilibrium value ofwstd,
although, in some approximations, it might not be necessar-
ily found as a root of Eq.s6d. For example, for a very large

volumesV→`d the termnw can be neglected in comparison
with c, and Eq.s6d becomes

0 = k+s1 − wdc − k−w. s7d

In this case the limiting value of the fractional occupancy is
given by the standard formula

w1 = k+c/sk+c + k−d. s8d

C. Diffusion-controlled irreversible reaction

The kinetic equation has the simplest form when the
reaction is diffusion-controlled and irreversible, i.e., every
molecule of the ligand that reaches the reaction surface be-
comes permanently bound. Formally, this situation corre-
sponds to an infinite association constant:k+→`. According
to Eqs.s2d ands3d, this means that the local concentration of
the ligand solution should vanish:

c − NGstd p pstd = 0. s9d

Here, for the future convenience, the notationpstd is used for
ẇstd. We assume thatc,n and, consequently, the limiting
value ofwstd is w1=c/n,1.

Equations9d can be easily solved in terms of Laplace
transform. The Laplace transform of an arbitrary function
Fstd is defined by

F̂ssd =E
0

t

e−stFstddt. s10d

We apply this transformation to Eq.s9d, keeping in mind that
it converts convolution to ordinary multiplication

c/s− NĜssdp̂ssd = 0. s11d

Note that 1ˆ =1/s. From Eq.s11d we have

p̂ssd = c/NsĜssd. s12d

Since the fractional occupancy can be expressed aswstd
=1ppstd, its Laplace transform is

ŵssd = p̂ssd/s. s13d

The Laplace transform inversion, required to findpstd
andwstd, is, in general, a delicate matter. However, the mean
reaction timet can be easily found directly fromp̂ssd

t =E
0

`

t
pstddt

w1
= −

1

w1
Fdp̂ssd

ds
G

s=0
. s14d

Note thatpstddt=dwstd is just an increase of the fractional
occupancy in the time intervalst ,t+dtd. Before differentia-
tion of Eq. s12d, it is more convenient to rewrite it in the
form

p̂ssd/w1 = 1/f1 + sĤssdg, s15d

whereĤssd is defined by Eq.s4d. Substituting Eq.s15d into
Eq. s14d, we get
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t = Ĥs0d. s16d

The quantityĤs0d is, in fact, the time required for an average
ligand molecule to find its way to the reaction surface. It is a
very important parameter of the system. Furthermore, we
will call it the smeand first collision time and denote it bytF.

It should be mentioned that the solutionwstd defined by
Eqs. s12d and s13d remains valid also in the case when
c.n, so far aswstd,1.

D. Linear approximation „case of a small fractional
occupancy …

When the fractional occupancywstd is negligible in com-
parison with unity, Eq.s3d becomes linear

pstd = k+fc − NGstd p pstdg − k−f1 p pstdg. s17d

The requirementwstd!1 always holds for the initial phase of
the reaction. If, in addition, the limiting value ofwstd is also
small, it is defined byfcf. Eq. s6dg

0 = k+sc − nwd − k−w. s18d

For self-consistency, the solution of this equation must sat-
isfy the condition

w1 = k+c/sk+n + k−d ! 1. s19d

As before, Eq.s17d can be treated in terms of Laplace trans-
form to give

p̂ssd = k+c/fs+ k+NsĜssd + k−g s20d

or, taking into account Eqs.s4d and s19d,

p̂ssd
w1

=
k+n + k−

sf1 + k+nĤssdg + k+n + k−

. s21d

Note thatp̂s0d=w1. The mean reaction time is, according to
Eqs.s14d and s21d,

t =
1 + k+ntF

k+n + k−
, s22d

wheretF=Ĥs0d is the first collision time.

E. Steady-state approximation

Under steady-state conditions,ẇstd is assumed to be con-
stant. More precisely, the reaction rateẇstd must decrease
much more slowly than the memory functionGstd. In this
case, one can neglect all the “memory” effects and approxi-
mateHstd by a delta-function,

Hstd = tFdstd. s23d

Equations5d takes then the form

dw/dt = k+s1 − wdfc − nw − ntFsdw/dtdg − k−w. s24d

Now, it is more convenient to consider timet as a function of
w. The solution of Eq.s24d fwith initial condition ts0d=0g is

tswd =
1

k+nsw2 − w1dHf1 + k+ntFs1 − w2dglnS1 −
w

w2
D

− f1 + k+ntFs1 − w1dglnS1 −
w

w1
DJ , s25d

where w1 and w2 are, as before, the solutions of Eq.s6d
sw1,w2d. The mean reaction time can be found by the for-
mula

t =
1

w1
E

0

w1

tswddw, s26d

which yields

t =
1

k+nsw2 − w1dHf1 + k+ntFs1 − w1dg

− f1 + k+ntFs1 − w2dgF1 +
w2 − w1

w1
lnS1 −

w1

w2
DGJ .

s27d

When the amount of receptor, multiplied by the factor
w1, is negligible in comparison with the total amount of
ligand sw1n!cd, Eq. s24d simplifies to

dw/dt = k+s1 − wdfc − ntFsdw/dtdg − k−w. s28d

The solution is

tswd =
1

k+c + k−

3Hk+ntFw − f1 + k+ntFs1 − w1dglnS1 −
w

w1
DJ ,

s29d

where the limiting value of fractional occupancy,w1, is given
by Eq. s8d. The mean reaction time is

t = f1 + k+ntFs1 − w1/2dg/sk+c + k−d. s30d

It should be noted that Eqs.s28d–s30d can also be obtained in
the frame of the so-called two-compartment model.10

III. APPLICATION TO PARTICULAR SYSTEMS

A. One-dimensional diffusion to the bottom
of a well

1. Memory function

Consider a well, of heighta, filled with the ligand solu-
tion fFig. 1sadg. The receptor is immobilized at the bottom, of
areas. The only transport mechanism is supposed to be the
diffusion characterized by a diffusion coefficientD. We start
to analyze this system by finding the memory functionGstd.
Since the motion of the ligand molecules in a horizontal
direction has no influence on the reaction kinetics, the prob-
lem is essentially one-dimensional.

Suppose that a one-dimensional particle, of diffusion co-
efficient D, diffuses within the intervals0,ad with reflecting
boundaries. At time zero, the particle starts from the point
x=0. The quantitysGstddx coincides with the probability to
find the particle in the intervals0,dxd at the time instantt.
Another view on this system is that the particle moves along
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an infinite chain of straight segments of lengtha, but this
chain has been folded like a folding rule: the direction of
each segment is exactly opposite to its neighbors, so that the
entire chain has been collapsed to within the size of a single
segment. Now, the quantitysGstddx is equal to the probabil-
ity to find the particle in one of the intervalss2na−dx,2na
+dxd along the chain, wheren is an arbitrary integer

sGstddx= o
k=−`

`

g1s2na,td2dx, s31d

where

g1sx,td = s4pDtd−1/2 exps− x2/4Dtd s32d

is the fundamental solution of the diffusion equation in one-
dimensional space. The memory function can also be repre-
sented as

sGstd = s1/adfsa/ÎDtd, s33d

wherefs d is a universal function that does not depend on the
parameters of the system,

fsyd =
y

Îp
F1 + 2o

n=1

`

exps− n2y2dG . s34d

The Laplace transform of Eq.s33d is

sĜssd = s1/ÎDsdcothsaÎs/Dd. s35d

2. Diffusion-controlled irreversible reaction

For a diffusion-controlled irreversible reaction, the
Laplace transform of the reaction rate, according to Eqs.s12d
and s35d, is given by11

p̂ssd = sc/rdÎD/s tanhsaÎs/Dd, s36d

where r=N/s is the surface density of the receptor. The
inversion of Eq.s36d yields

pstd =
c

r
ÎD

ptF1 + 2o
n=1

`

s− 1dn expS−
n2a2

Dt
DG , s37ad

or, in an alternative representation,

pstd =
2cD

ar
o
n=1

`

expS−
s2n − 1d2p2

4

D

a2tD . s37bd

Equationss37ad and s37bd are equivalent. The series in Eq.
s37ad converges faster for smallt and the series in Eq.s37bd
converges faster for larget. By integration of Eqs.s37ad and
s37bd, we get, respectively,

wstd =
2c

r
ÎD

p
HÎt + 2o

n=1

`

s− 1dnFÎt expS−
n2a2

Dt
D

− naÎp

D
erfcS na

ÎDt
DGJ , s38ad

wstd =
8ac

p2r
o
n=1

`
1

s2n − 1d2F1 − expS−
s2n − 1d2p2

4

D

a2tDG .

s38bd

Although Eq.s38bd is simpler, the convergence of Eq.s38ad
for practically interesting values oft is better. The mean
reaction time can be found asfcf. Eqs.s4d and s16dg

t = tF = Ĥs0d = lim
s→0

sasĜssd − 1/sd = a2/3D. s39d

3. Linear approximation

For the sake of simplicity, we will consider the solution
of the linearized kinetic equation only for a very large height
of the well: a→`. The memory function in this case is re-
duced to

sG0std = 1/ÎpDt. s40d

Its Laplace transform is

sĜ0ssd = 1/ÎDs. s41d

Substituting this expression into Eq.s20d, we get

p̂ssd = k+c/ss+ k+rÎs/D + k−d. s42d

The denominator in Eq.s42d can be considered as a square
polynomial inÎs. If l1 andl2 are the roots of this polyno-
mial, Eq. s42d can be rewritten as

p̂ssd =
k+c

l1 − l2
F 1

Îs− l1

−
1

Îs− l2
G . s43d

In general,l1 andl2 are complex numbers with a negative
real part. We assume thatl1Þl2. The inverse Laplace trans-
form of the function

F̂1ssd = 1/sÎs− ld s44d

is known to be

FIG. 1. Assay geometries: One-dimensional diffusion to the bottom of a
well sad; three-dimensional diffusion to a spherical beadsbd; and three-
dimensional diffusion to a spotscd. The receptor on the surface is indicated
by a fat line.
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F1std = 1/Îpt + l expsl2tderfcs− lÎtd. s45d

Thus, the expression in Eq.s43d can be easily inverted

pstd =
k+c

l1 − l2
fl1 expsl1

2tderfcs− l1
Îtd

− l2 expsl2
2tderfcs− l2

Îtdg. s46d

In order to obtain the fractional occupancywstd, one can
fkeeping in mind Eq.s13dg make use of the following pair of
the “image” and “original” functions:

F̂2ssd = 1/ssÎs− ld, s47d

F2std =
1

l
expsl2tderfcs− lÎtd −

1

l
. s48d

The required expression forwstd is

wstd =
k+c

l1 − l2
F 1

l1
expsl1

2tderfcs− l1
Îtd −

1

l1

−
1

l2
expsl2

2tderfcs− l2
Îtd +

1

l2
G . s49d

The limiting value of the fractional occupancy isw1

=k+c/k− fcf. Eq. s19dg. The mean reaction timet is not de-
fined. The substitution of Eq.s42d into Eq. s14d leads to a
divergence:t=`.

It should be noted that, in practice, it is inconvenient to
evaluate expressions in Eqs.s46d and s49d directly as they
are, because of the overflow/underflow errors caused by the
functions exps d and erfcs d at large t. This problem, how-
ever, can be easily avoided by using the formula

expsx2derfcsxd =
1

xÎp
F1 −

1

2x2 +
1 · 3

22x4 −
1 · 3 · 5

23x6 + . . .G ,

s50d

where Resxd is assumed to be large and positive.

B. Three-dimensional diffusion to a sphere

1. Diffusion-controlled irreversible reaction

Consider a spherical bead, covered with the immobilized
receptor, in a large volume of ligand solutionfFig. 1sbdg.
Imagine for a while that the ligand molecules can freely
move through the space occupied by the bead. The memory
function for this simplified case,G8std, can be easily found.
Suppose that at time zero a ligand molecule is positioned at
the topmost point of the bead. Its time-dependent concentra-
tion at any observation pointsin the absence of reactiond is
given by the fundamental solution of the diffusion equation
in three-dimensional space

g3sx,td = s4pDtd−3/2exps− x2/4Dtd, s51d

wherex is the distance from the starting point. The “simpli-
fied” memory functionG8std is just the average ofg3sx,td
over all observation points belonging to the bead surface,

G8std =
1

4p
E

f=0

2p

dfE
cosu=−1

1

dscosudg3fRÎ2s1 − cosud,tg

=
1 − exps− R2/Dtd

8pR2ÎpDt
. s52d

Here we used a spherical coordinate system with the origin at
the center of the bead;R is the bead radius. The simplified
memory function, although not suited for the kinetic equa-
tion fEq. s3dg, is quite useful in the case of a diffusion-
controlled irreversible reaction. In such a reaction, the ligand
molecules cannot penetrate inside the bead anyway, because
they are all captured at the surface. It is, however, important
to take into account explicitly that the space occupied by the
bead is free from the ligand molecules at time zero. Let
c8sr ,td be the time-dependent ligand concentration in the ab-
sence of a reaction as a function of the distancer to the
center of the bead, which is assumed to be permeable. Then
the initial conditions are

c8sr,0d = 0 if r ø R,

=c if r . R. s53d

For t.0, the functionc8sr ,td at the bead surface can be
found as

c8sR,td = cE
f=0

2p

dfE
cosu=−1

1

dscosudE
r=R

`

r2 dr

3g3sÎR2 + r2 − 2Rr cosu,td

=
c

R
ÎDt

p
F1 − expS−

R2

Dt
DG

+
c

2F1 + erfcS R
ÎDt

DG . s54d

Since in the presence of a reaction the local concentration at
the bead surface should vanish, we can writefcf. Eq. s9dg

c8sR,td − NG8std p pstd = 0. s55d

Hence, in terms of Laplace transforms,

p̂ssd = ĉ8sR,sd/NĜ8ssd. s56d

Substituting Eqs.s52d and s54d into Eq. s56d, we get

p̂ssd = s4pDRc/Nds1/s+ R/ÎDsd. s57d

The inversion of Eq.s57d yields

pstd = s4pDRc/Nds1 + R/ÎpDtd, s58d

wstd = s4pDRc/Ndst + 2RÎt/pDd. s59d

Equations59d is the well-known Smoluchowski formula.12 It
should be recalled that in our case it holds only forwstd,1.

2. Linear approximation

The correct memory function, for an impermeable bead,
can now be easily found by comparison of Eqs.s12d ands57d
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Ĝ0ssd =
1

4pR2ÎDsÎs+ ÎD/Rd
, s60d

G0std =
1

4pR2ÎD
F 1

Îpt
−

ÎD

R
expSDt

R2DerfcSÎDt

R
DG .

s61d

Substituting Eq.s60d into Eq.s20d, we get the Laplace trans-
form of the reaction rate in the linear approximation

p̂ssd =
k+csÎD/R+ Îsd

sÎs+ sk+r/ÎD + ÎD/Rds+ k−
Îs+ k−

ÎD/R
, s62d

where r=N/4pR2 has, again, the meaning of the surface
density of the receptor. This expression can be inverted by
the method already usedfcf. Eq.s42d and the text thereafterg.
Let l1, l2, andl3 be the roots of the denominator in Eq.s62d
considered as a polynomial inÎs. Then

p̂ssd = k+cF ÎD/R+ l1

sl2 − l1dsl3 − l1dsÎs− l1d
+ cyc. perm.G ,

s63d

pstd = k+cF sÎD/R+ l1dl1 expsl1
2tderfcs− l1

Îtd
sl2 − l1dsl3 − l1d

+ cyc. perm.G , s64d

wstd = k+cH ÎD/R+ l1

sl2 − l1dsl3 − l1dl1
fexpsl1

2tderfcs− l1
Îtd

− 1g + cyc. perm.J . s65d

Here, by “cyc. perm.” we denote the terms obtained from the
first one by cyclic permutations of the indices ofl.

The mean reaction timet can, in principle, be found by
the standard formulafEq. s22dg. However, this formula
should be adapted for a very large volume of ligand solution:
V→`. In this caseG0std=H0std /V, so that

Ĝ0s0d = Ĥ0s0d/V = tF/V. s66d

Taking into account Eq.s66d and neglecting the termk+n in
comparison withk−, we can rewrite Eq.s22d as

t = f1 + k+NĜ0s0dg/k−. s67d

This equation can, of course, be derived directly from Eqs.
s14d ands20d with w1=k+c/k−. For the memory function un-
der considerationfEq. s60dg, we have

Ĝ0s0d = 1/4pDR. s68d

Thus, the mean reaction time is, according to Eqs.s67d and
s68d,

t = s1 + k+rR/Dd/k−. s69d

C. Three-dimensional diffusion to a spot

1. Memory function

Consider a circular spot of receptor molecules on a flat
reflecting boundary between a solid phase and a large vol-
ume of ligand solution. From a practical point of view, this is
the most interesting case relevant for the microarray tech-
nique. However, in the frame of our formalism it can be
treated only approximately, because the reaction conditions
on the spot depend on the distance to its center. The memory
function is, according to its formal definition, the function
2g3sx,td fEq. s51dg averaged over all pairs of points belong-
ing to the spot, with the argumentx being the distance be-
tween the points in each pair

G0std =
1

spR2d2E
f1=0

2p

df1E
r1=0

R

r1dr1E
f2=0

2p

df2

3E
r0=0

R

r2dr2 · 2g3sÎr1
2 + r2

2 − 2r1r2 cosf2,td.

s70d

Here, we use a polar coordinate system with the origin at the
center of the spot.R is the spot radius. The factor 2 preced-
ing g3s d accounts for the fact that only half of the space is
available for diffusion. Although a closed form of Eq.s70d is
not known, this equation can be used to obtain a very impor-
tant parameter of the system, namely, the first collision time
tF divided by the volumeV of ligand solution

tF/V = Ĝ0s0d =E
0

`

G0stddt =
8

3p2DR
. s71d

It should be recalled that Eq.s71d was obtained in the ap-
proximation of uniform reaction conditions over the spot.
The exact value oftF /V is known to be5

tF/V = 1/4DR. s72d

The difference between the two values oftF /V is <8%,
which can serve as an estimate of accuracy of our approach
for this system.

The function given by Eq.s70d is very inconvenient to
use in the kinetic equation. Instead of using it, we wish to
construct an approximate memory function thatsid is suffi-
ciently simple,sii d similar in form to Eqs.s60d ands61d, siii d
provides the same value oftF /V as the true memory function
fEq. s71dg, and sivd has the correct asymptotic behavior at
small and large timest:

sG0std = 2g1s0,td when t → 0, s73d

G0std = 2g3s0,td when t → `. s74d

Here s=pR2 is the area of the spot andg1s d is defined by
Eq. s32d. A function satisfying these conditions is

Ĝ0ssd =
1

2pR2ÎD
S 1

Îs+ j1

+
1

Îs+ j2
D , s75d
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G0std =
1

pR2ÎD
H 1

Îpt
− Refj1 expsj1

2tderfcsj1
ÎtdgJ ,

s76d

where

j1 = a + ib, j2 = a − ib, s77d

a = f48p/s256 − 9p2dgÎD/R, s78d

b = s1 − 9p2/128d1/2a, s79d

with i being the imaginary unit.
The corrections due to a finite volume of the ligand so-

lutions can be found as follows. Suppose that the receptor
spot is positioned exactly in the center of the bottom of an
incubation chamber that has the form of a parallelepiped
with the dimensionslength3width3height=b3b3a fFig.
1scdg. We assume thatR!a andR!b, so that at the times of
the ordera2/D andb2/D the functionG0std is already close
to 2g3s0,td. Using the three-dimensional analogue of Eq.
s33d, we can write

Gstd = G0std − 2g3s0,td + s1/ab2dfsa/ÎDtdf2sb/2ÎDtd, s80d

where the functionfs d is defined by Eq.s34d.

2. Diffusion-controlled irreversible reaction

Assuming thatV→` and substituting the functionĜ0ssd
fEq. s75dg into the general solution of the kinetic equation for
the diffusion-controlled irreversible reactionfEq. s12dg, we
get

p̂ssd =
c

N
F3p2DR

8s
+

9p3R2ÎD

128Îs

+
s128 − 9p2dpR2ÎD

128

1

a + Îs
G , s81d

pstd = sc/Ndfs3p2/8dDR+ R2ÎpD/t

− s1 − 9p2/128dpR2ÎDa expsa2tderfcsaÎtdg,

s82d

wstd = sc/Ndhs3p2/8dDRt+ s9p2/64dR2ÎpDt

+ s1 − 9p2/128dspR2ÎD/adf1

− expsa2tderfcsaÎtdgj

wstd , 1. s83d

The inaccuracy of Eq.s82d does not exceed 8% as compared
with a more rigorous solution that can be found in Refs. 9
and 13.

3. Linear approximation

In the linear approximation forV→`, we have, accord-
ing to Eqs.s20d and s75d,

p̂ssd =
k+cfsÎs+ ad2 + b2g

fsÎs+ ad2 + b2gss+ k−d + sk+r/ÎDdsÎs+ ads
,

s84d

pstd = k+cH fsl1 + ad2 + b2gl1 expsl1
2tderfcs− l1

Îtd
sl1 − l2dsl1 − l3dsl1 − l4d

+ cyc. perm.J , s85d

wstd = k+cH fsl1 + ad2 + b2gfexpsl1
2tderfcs− l1

Îtd − 1g
l1sl1 − l2dsl1 − l3dsl1 − l4d

+ cyc. perm.J . s86d

Here r=N/pR2 and l1, l2, l3, and l4 are the roots of the
denominator in Eq.s84d considered as a polynomial inÎs
fcf. Eqs.s63d–s65dg. The mean reaction time can be found by
means of Eqs.s67d and s71d,

t = s1 + 8k+rR/3pDd/k−. s87d

IV. NUMERICAL SOLUTION

A. Computational scheme

In general, the fullsnonlineard kinetic equation can be
solved only numerically. In terms of the reaction ratepstd
=ẇstd, it has the formfcf. Eq. s3dg

pstd = k+S1 −E
0

t

pst8ddt8DSc − NE
0

t

Gst − t8dpst8ddt8D
− k−E

0

t

pst8ddt8. s88d

The numerical solution of this equation was obtained as fol-
lows. Lett0,t1,t2, . . . denote the control points along the time
axis: t0=0, tn, tn+1, sn=0,1,2, . . .d. Within each interval
stn,tn+1d, the function pstd was approximated aspstd
=pn expf−gnst− tndg, wherepn andgn are constants. Note that
p0=k+c and pn+1=pn expf−gnstn+1− tndg. Thus, the required
solution is defined by a sequence of thegn values. When the
first m terms of this sequencesg0,g1, . . . ,gm−1d were known,
the next one,gm, was found by numerical solution of the
equation

pm expf− gmstm+1 − tmdg

= k+S1 −E
0

tm+1

pstddtD
3Sc − NE

0

tm+1

Gstm+1 − tdpstddtD
− k−E

0

tm+1

pstddt, s89d

where the integrals containingpstd were considered as func-
tions of gm. The convolution integral was evaluated numeri-
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cally. The step sizesi.e., the interval between the control
pointsd was controlled adaptively by carrying out two steps
of an identical sizeDt and comparing the result with that of
a single step of the size 2Dt. This computational scheme
proved to be stable, in the sense that the solution was not
significantly affected by the choice of the three parameters
that definedsid the accuracy of numerical integration,sii d the
accuracy of finding the root of Eq.s89d, and siii d the step
size—provided that these parameters were sufficiently small.

B. One-dimensional diffusion

The numerical computations for the one-dimensional
diffusion to the bottom of a wellfFig. 1sadg were performed
for the following set of parameters. The rate constants were
k+=5.33105 1/M s andk−=3.2310−4 1/s, the diffusion co-
efficient of the ligand moleculesD=1310−7 cm2/s, the re-
ceptor surface densityr=1.5310−11 mole/cm2, and the
height of the incubation chambera=0.3 cm. These param-
eters correspond approximately to the microtiter well assay
with the human interferon-g as a ligand and its monoclonal
antibody as a receptor.14 The initial ligand concentrationc
was varied over a large range. The receptor was assumed to
cover the entire bottom of the incubation chamber. The
memory function was defined by Eqs.s33d and s34d.

The examples of numerical solution of Eq.s88d, for c
=0.1n, c=n, andc=10n, are displayed in Fig. 2sthick solid
line also denoted as line 1d. The quantityn is equal toN/V
=r /a=5.0310−8 M. In the same figure, the following ana-
lytical curves are shown for comparison. Line 2sdotted lined
corresponds to a diffusion-controlled irreversible reaction
fEqs. s37ad and s37bdg. Line 3 sthin solid lined is the linear
approximation in the limita→` fEq. s46dg. Line 4 sdashed
lined represents the steady-state approximation. In the latter
case, the dependence ofpstd=dw /dt on t is given parametri-
cally by Eqs.s24d ands25d, with tF=a2/3D=0.33106 s fsee
Eq. s39dg. The quantityw plays the role of the parameter.

The corresponding curves for the fractional occupancyw
are shown in Fig. 3. The numerical solution is represented by
line 1 sthick solid lined, the solution for a diffusion-
controlled irreversible reactionfEqs.s38ad ands38bdg by line
2 sdotted lined, the linear approximation in the limita→`
fEq. s49dg by line 3 sthin solid lined, and the steady-state
approximationfEq. s25dg by line 4 sdashed lined.

It should be recalled that the functions represented by
curves 2 and 3 are proportional to the initial ligand concen-
trationc. Thus, in logarithmic scalesFig. 2d, an increase ofc
does not change the form of these curves; it only shifts them
upwards. By derivation of curve 2, the backward reaction
was completely ignored. However, it was taken into consid-
eration that the number of ligand molecules is finitesas the
height of the incubation chamber,a, is finited. On the con-
trary, curve 3 was obtained under the assumption thata
→`; but the backward reaction was accounted for. Since
curve 2 lies lower than curve 3sfor t.tFd, the role of the
backward reaction for the given set of parameters is negli-
gible. Therefore, the diffusion-controlled irreversible reac-
tion scurve 2d serves as a good approximation at low concen-

trationsc si.e., c,nd. Although the initial behavior of curve
2 is not correctsFig. 2d, this can hardly be observed experi-
mentally sFig. 3d.

In Sec. III A we did not consider the linearized kinetic
equationfEqs.s17d ands20dg with the memory function for a
well of a finite heighta fEqs. s33d–s35dg because of math-
ematical complexity. It is clear, however, that the solution
would be close to curve 3 at smallt, and to curve 2 at large
t sfor the given set of parametersd.

When the concentrationc is greater thatn, the limiting
fractional occupancyw1 is approximately equal to unity. In
this case, curves 2 and 3, though completely wrong at large
times t, can serve as useful estimates of the initial course of
the reaction. They are valid almost in the whole region
w,w1, if c@n fFig. 3scdg.

It is interesting to note that the steady-state approxima-
tion scurve 4d proved to be reasonably good at low concen-

FIG. 2. Reaction ratep as a function of timet for various initial ligand
concentrationsc. The receptor is immobilized at the bottom of the incuba-
tion chamber of heighta=0.3 cm. The other parameters are the rate con-
stantsk+=5.33105 1/M s andk−=3.2310−4 1/s, the diffusion coefficient
D=1310−7 cm2/s, and the receptor surface densityr=1.5
310−11 mole/cm2. The initial ligand concentrationc is indicated in the units
of n=r /a=5.0310−8 M. Line 1 sthick solid lined is the numerical solution
of Eq. s88d with Gstd defined by Eq.s33d. Line 2 sdotted lined is given by
Eqs. s37ad and s37bd sdiffusion-controlled irreversible reaction:k+→`d.
Line 3 sthin solid lined is given by Eq.s46d slinear approximation in the limit
a→`d. Line 4 sdashed lined is given parametrically by Eqs.s24d and s25d
with tF=a2/3D ssteady-state approximationd.
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trationsc fFig. 3sadg. Only when the concentration becomes
high sc@nd, the steady-state approximation fails completely
fFig. 3scdg.

C. Three-dimensional diffusion to a spot

The numerical computations for the three-dimensional
diffusion to a spotfFig. 1scdg were performed for the same
set of parameters as in Sec. IV B. In addition, two other
parameters were used that follow. The bottom of the incuba-
tion chamber was assumed to be a square with the sideb
=0.5 cm. The spot of radiusR=0.005 cm was positioned in
the center. The memory function was defined by Eq.s80d.

The numerical solutions in terms of the reaction ratepstd
are displayed in Fig. 4sthick solid line or line 1d for three
values of the initial ligand concentration:c=0.01Kd, c=Kd,

and c=100Kd, whereKd=k−/k+=6.0310−10 M is the equi-
librium dissociation constant. The following analytical re-
sults are also shown: the diffusion-controlled irreversible re-
action fEq. s82dg is represented by line 2sdotted lined, the
linear approximationfEq. s85dg by line 3 sthin solid lined,
and the steady-state approximation by line 4sdashed lined.
Line 4 is given parametrically by the Eqs.s28d and s29d,
which were derived under the condition thatn!c/w1. The
use of these equations in the present case is justified, because
n=N/V=rpR2/ab2=0.026Kd, and the quantityc/w1 is al-
ways greater thanKd. For the first collision time we used the
value tF=3.993107 s, which was obtained numerically as

ab2Ĝs0d, with Gstd defined by Eq.s80d. For comparison, the
analytical expressionfEq. s71dg givestF=4.053107 s. sThe
difference between the two values oftF is not principal, but
we used the more exact one, in order not to mix up the
inaccuracy of the formula with the inaccuracy of the param-
eter value.d

The curves for the fractional occupancywstd are shown
in Fig. 5. Line 1sthick solid lined corresponds to the numeri-

FIG. 3. Fractional occupancyw as a function of timet for various initial
ligand concentrationc. The reaction conditions are the same as in Fig. 2.
Line 1 sthick solid lined corresponds to the numerical solution of Eq.s88d.
Line 2 sdotted lined is given by Eqs.s38ad and s38bd sdiffusion-controlled
irreversible reactiond. Line 3 sthin solid lined is given by Eq.s49d slinear
approximationd. Line 4 sdashed lined is given by Eq.s25d with tF=a2/3D
ssteady-state approximationd.

FIG. 4. Reaction ratep as a function of timet for various initial ligand
concentrationsc. The receptor is immobilized within a circular spot of ra-
diusR=0.005 cm at the center of the bottom of an incubation chamber. The
dimensions of the incubation chamber arelength3width3height=b3b
3a, where a=0.3 cm andb=0.5 cm. The other parameters are the rate
constantsk+=5.33105 1/M s andk−=3.2310−4 1/s, the diffusion coeffi-
cient D=1310−7 cm2/s, and the receptor surface densityr=1.5
310−11 mole/cm2. The initial ligand concentrationc is indicated in the units
of Kd=k−/k+=6.0310−10 M. Line 1 sthick solid lined is the numerical solu-
tion of Eq. s88d with Gstd defined by Eq.s80d. Line 2 sdotted lined is given
by Eq. s82d sdiffusion-controlled irreversible reaction:k+→`d. Line 3 sthin
solid lined is given by Eq.s85d slinear approximation in the limita,b→`d.
Line 4 sdashed lined is given parametrically by the Eqs.s28d and s29d with

tF=ab2Ĝs0d ssteady-state approximationd.
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cal solution of the full kinetic equation, line 2sdotted lined to
the diffusion-controlled irreversible reactionfEq. s83dg, line
3 sthin solid lined to the linear approximationfEq. s86dg, and
line 4 sdashed lined to the steady-state approximationfEq.
s29dg. It should be mentioned that Eq.s25d yields a curve that
would be indistinguishable from line 1 in Figs. 5sad and 5sbd
and from line 4 in Fig. 5scd.

Note that curves 2 and 3 were obtained in the assump-
tion thata,b→` or, in other words, that the supply of ligand
molecules is inexhaustible. If the limited number of ligand
molecule were taken into account, curve 2 would lie lower at
the times exceedingtF,107 s. However, the backward reac-
tion, which is accounted for by curve 3, comes to play an
important role already at the times,104 s. Hence, at low
ligand concentrationssc!Kdd, the reaction reaches the dy-
namic equilibrium due to the high rate of the backward re-
action, while the supply of ligand molecules is still far from
being exhausted. For that reason, curve 2 fails to predict the
course of reaction correctlysif t.104 sd, whereas curve 3 is
quite a good approximationfFig. 5sadg.

At high ligand concentrationssc.Kdd, saturation of
binding sitessw1<1d becomes the main reason for slowing
down the reaction. In this case, only the initial part of curves
2 and 3 is relevant. However, this relevant part can be as
large as almost the whole regionw,w1 fFig. 5scdg.

For the given set of parameters, the steady-state regime
develops after,104 s. At this point, curve 4 merges with
curve 1 sFig. 4d. The steady-state approximation describes
the further course of the reaction very well. If the mean
reaction time exceeds 104 s swhich is the case at low and
intermediate concentrationscd, this approximation leads to
sufficiently precise resultsfFigs. 5sad and 5sbdg.

Figure 6 illustrates the dependencies of the numerical
solution on the dissociation rate constantk−, on the associa-
tion rate constantk+, and on the spot radiusR sthick solid
linesd. For most of the curves, the corresponding steady-state
solution fEqs. s28d and s29dg is also shownsdashed linesd.
The steady-state approximation proved to be very good at the
time scales of practical interest. However, the simplified for-
mulasfEqs.s28d ands29dg do not hold for the increased spot
radius R=0.025 cmscf. curve Gd, because the ratiow1n /c
=0.38 is not sufficiently small. In this case, one should rather

FIG. 5. Fractional occupancyw as a function of timet for various initial
ligand concentrationc. The reaction conditions are the same as in Fig. 4.
Line 1 sthick solid lined corresponds to the numerical solution of Eq.s88d.
Line 2 sdotted lined is given by Eq.s83d sdiffusion-controlled irreversible
reactiond. Line 3 sthin solid lined is given by Eq.s86d slinear approximationd.
Line 4 sdashed lined is given by Eq.s29d with tF=ab2Ĝs0d ssteady-state
approximationd.

FIG. 6. Dependence of the functionpstd on the dissociation rate constantk−

supper framed, on the association rate constantk+ smiddle framed, and on the
spot radiusR slower framed. The numerical solutions are shown with the
thick solid lines. Line A, presented in all frames, corresponds to the default
set of parameters that are given in the legend of Fig. 4. The ligand concen-
tration isc=6.0310−11 M. For each of the other curves, one parameter has
a nondefault value. Upper frame: Line A,k−=3.2310−4 1/s; line B, k−

=3.2310−3 1/s; line C,k−=3.2310−2 1/s. Middle frame: Line A,k+=5.3
3105 1/M s; line D, k+=5.33104 1/M s; line E, k+=5.33103 1/M s.
Lower frame: Line F, R=0.001 cm; line A, R=0.005 cm; line G,R
=0.025 cm. For some curves, the corresponding steady-state solution is
given by the dashed line.
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use Eqs.s24d and s25d, which are free from the assumption
w1n!c. All the data presented in Fig. 6 correspond to quite
a low concentrationc=6.0310−11 M, so that the inequality
c!Kd is always satisfied. Under these conditions, the ana-
lytical linear approximation should hold. Indeed, one can
easily verify that Eq.s85d practically exactly reproduces the
thick solid curves in Fig. 6, except for line G corresponding
to the large spot radius. In the latter case, the solution given
by Eq. s85d follows the dashed line at larget.

V. CONCLUDING REMARKS

We believe that the theoretical approach presented in this
paper will be useful for the design and interpretation of im-
munoassays, in particular, those involving an array of anti-
body microspots. From a practical point of view, the most
interesting situation is when the ligand concentration is low.
We have considered here three theoretical approaches that
are appropriate for treating this case:sid the steady-state ap-
proximation,sii d the analytical solution of the linearized ki-
netic equation, andsiii d the numerical solution of the full
nonlinearized kinetic equation. However, at least one essen-
tial point still remains to be clarified. It is common practice
to stir the ligand solution in order to accelerate the reaction.
Taking into account the stirring will be the next step in de-
veloping the theory. Although a thorough treatment of this
problem is beyond the scope of the present study, we would
like to suggest some preliminary considerations.

The stirring does not change the form of the basic kinetic
equationfEq. s3dg. The problem is to find an appropriate
memory function. It is clear that such a function will decay
faster than in the case of pure diffusion. Hence, the steady-
state approximationfEq. s23dg will be even more justified.
The effect of stirring results essentially in a decrease of the
first collision timetF, which can be treated as a new experi-
mental parameterssubstituting in this role the diffusion co-
efficient Dd.
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