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Kinetics of protein binding in solid-phase immunoassays: Theory
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In a solid-phase immunoassay, binding between an antigen and its specific antibody takes place at
the boundary of a liquid and a solid phase. One of the reactagteptoy is immobilized on a
surface. The other reactafigand) is initially free in solution. We present a theory describing the
kinetics of immunochemical reaction in such a system. A single essential restriction of the theory is
the assumption that the reaction conditions are uniform along the binding surface. In general, the
reaction rate as a function of time can be obtained numerically as a solution of a nonlinear integral
equation. For some special cases, analytical solutions are available. Various immunoassay
geometries are considered, in particular, the case when the reaction is carried out on a microspot.
© 2005 American Institute of PhysidDOI: 10.1063/1.1927510

I. INTRODUCTION theoretical approach, in the framework of which both the
initial behavior and the steady-state kinetics are considered
The detection of a given protein in a liquid sample is aas particular cases.
routine problem in experimental biology. One of the most
preferred and efficient tools developed for this purpose is the
immunoassay technique, which makes use of the high affinll- GENERAL THEORETICAL CONSIDERATIONS

ity of antigen—antibody pair%.2 In a solid-phase immunoas- A. Basic equation
say, the liquid sample containing one of the reagésasy, . . . .
Y g P g géstsy In general, we wish to describe a chemical reaction at

antigen is put in contact with a solid surface, where the o )
other reagentantibody is immobilized. From the intensity the boundary of a I|qU|_d _and a .Spl'd phase. One of the reac-
tants, called receptor, is immobilized on a surface. The other

of the immunochemical reaction in this system, one can es- ; s ) . .
timate the initial concentration of the antigen in the Sample_reactant, called ligand, is initially free in solution. The ligand

A new and very promising trend in this field is the microar- can bind to the receptor at _1:1 stoichiometry. The problem is
ray immunoassay, where the liquid sample is simultaneous!} f|n_d the "’Fm"““t of the ligand bound to the receptor as a
in contact with a large numbdup to several thousandsf unction of timet.
antibodies arranged in an array of individual microspots. Let N be the total number of molecules of the receptor
Thus, the protein profile of a sample can, in principle, beand B(t) the n_umber of bound molecules of the ligand. The
obtained very quickly. Unfortunately, this technique is far reaction rate Is
from well e'stablished,. although many research efforts are B(t) =k,[N - B(t)]eL(t) - kB(), (1)
currently being made in this direction. In many recent pub-
lications, the sensitivity of the microarray immunoassays apwherek, andk_ are the intrinsic association and dissociation
pears considerably lower than expectéat review see, e.g., rate constants, respectively, agdt) is the local concentra-
Refs. 3 and % The reason for this may lie in the fact that the tion of the ligand solution at the reaction surface. Here and
experiments are designed without solid theoretical backfurther, a dot above a symbol denotes differentiation with
ground. respect to timeB(t)=dB/dt. As implied by Eq.(1), we as-
The kinetics of solid-phase immunoassays and relatedume that the reaction conditions do not depend on the po-
problems have been a subject of many theoretical stddi®s. sition on the surface.
However, most theories deal with either the initial phase of  In order to make use of Eq1), we should express the
the reaction or the steady-state regime. In the present papepantityc, (t) through the functiorB(t). For this purpose, we
we suggest a more genefalthough sometimes less predise introduce a “memory” functiorG(t) in the following way.
Imagine a deactivated molecule of ligand that cannot bind to

Author to whom correspondence should be addressed. Electronic maifl€ receptor, but re':ains a”_the orig_inal transport properties.
jl@dkfz.de Suppose that at time zero it is positioned somewhere at the
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reaction surface, the area of which we denotesbyVe de-  volume(V— =) the termve can be neglected in comparison
fine the quantityG(t)odx as the probability to find such a with c, and Eq.(6) becomes
molecule within an infinitesimally small distand& from the
reaction surface at the time In other words, the memory 0=ki(l-¢lc-ke. (7)
function G(t) is the local concentration of a single deacti- | this case the limiting value of the fractional occupancy is
vated molecule that starts from an arbitrary point of the rejyen py the standard formula
action surface.

Let ¢ be the initial ligand concentration. Imagine that, in @1 =K.c/(k,c+k). (8)
addition to the usual course of the reactideactivatednol-
ecules of the ligand are created at the reaction surface with
the rateB(t). Then the total local concentration of all ligand
molecules (active and deactivatedwill remain constant
and equal tac. The local concentration of deactivated mol- The kinetic equation has the simplest form when the
ecules can be expressed as a convolution integraeaction is diffusion-controlled and irreversible, i.e., every
ng(t—t’)B(t’)dt’, which we will further denote by molecule of the ligand that reaches the reaction surface be-

G(t)=B(t). Hence, the local concentration of the active mol-comes permanently bound. Formally, this situation corre-

C. Diffusion-controlled irreversible reaction

ecules is sponds to an infinite association constadqt: . According
) to Egs.(2) and(3), this means that the local concentration of
c (t) =c—G(t) = B(t). (2) the ligand solution should vanish:
Substituting this expression into E¢l) and dividing the c—NG(t) = p(t) = 0. 9)

latter by N, we obtain
Here, for the future convenience, the notatt) is used for

¢(t) = ki[1 = (O] = NG(t) * ¢(t)] - k-e(1), () &(t). We assume that< v and, consequently, the limiting
wheree(t)=B(t)/N is the fractional occupancy of the recep- Value of ¢(t) is ¢, =c/v<1.
tor binding sites. This is our basic kinetic equation. The ~ Equation(9) can be easily solved in terms of Laplace
transport processes are taken into account through the funfansform. The Laplace transform of an arbitrary function
tion G(t), which will be explicitly found for some particular F(t) is defined by
systems in Sec. lll. In the present section we will concentrate t
on the general analysis of E@3), assumingG(t) to be 'E(S):f e SF(t)dt. (10)
known. Note that, for sufficiently largg this function ap- 0
proaches 1V, whereV is the volume of the ligand solution.
Therefore it is convenient to introduce an auxiliary function
H(t) defined in the following way:

G(t) = IN + H(B)/IV. (4) c/s—NG(s)P(s) = 0. (11)

We apply this transformation to E¢P), keeping in mind that
it converts convolution to ordinary multiplication

It is obvious thatH(t) —0 ast—. In terms ofH(t), the  Note that E1/s. From Eq.(11) we have
basic kinetic equation can be rewritten as

(1) =k, [1 — e(t)][c - () — sH() * p()] — K g(D), B(s) = cNsCls). (12)

(5)  Since the fractional occupancy can be expressedy(&s

. . =1x*p(t), its Laplace transform is
wherev=N/V is the would-be volume concentration of the p(t P

receptor if it were detached from the reaction surface. In  &(s) =p(s)/s. (13

deriving Eqg.(5) we used the fact that#lp(t) = ¢(t).
9 Eq.9 Le(D=¢(0 The Laplace transform inversion, required to fip¢)

and¢(t), is, in general, a delicate matter. However, the mean

B. Limiting value of the fractional occupancy reaction timer can be easily found directly frof(s)
In the limit t— o, the system reaches dynamic equilib- * p(t)dt 1| dp(s)
rium (e=constant, and Eq.(5) reduces to T:J t——=-— “ds |- (14)
0 1 1 S Iso
0=ki(1-¢)(c—vp) -k o. (6)

) . ) ) ) Note thatp(t)dt=de(t) is just an increase of the fractional
This quadratic equation with respect ¢gohas two different  occupancy in the time intervat, t+dt). Before differentia-

positive real roots. We denote them @sand ¢,, assuming  tjon of Eq. (12), it is more convenient to rewrite it in the
that ¢, < ¢,. The limiting value of the fractional occupancy om

o(t) is, of course, the lowest roog;. (The other oneg,, is,

in fact, always greater than unityFurther in this paper, we p(s)/ @, =11 +s|:|(s)], (15)
will keep the notationy; for the equilibrium value ofp(t), R

although, in some approximations, it might not be necessamwhereH(s) is defined by Eq(4). Substituting Eq(15) into
ily found as a root of Eq(6). For example, for a very large Eq. (14), we get
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7=H(0). (16 t(p) = —{[1 +kopre(l - 902)]"1(1 : f)
e _ _ kiv(@z = ¢1) ®2
The quantityH(0) is, in fact, the time required for an average
ligand molecule to find its way to the reaction surface. Itis a —[1+kwre(l - <p1)]ln(1 - ﬁ) } (25)
very important parameter of the system. Furthermore, we ¢1

will call it the (mean first collision time and denote it byg.
It should be mentioned that the solutigfit) defined by

Egs. (12) and (13) remains valid also in the case when

c> v, so far asp(t) <1.

D. Linear approximation (case of a small fractional

occupancy )

When the fractional occupaney(t) is negligible in com-
parison with unity, Eq(3) becomes linear

p(t) = k[c=NG(t) * p(t) ] - k[1 p(t)]. (17)

The requiremend(t) <1 always holds for the initial phase of

the reaction. If, in addition, the limiting value af(t) is also
small, it is defined bycf. Eq. (6)]

0=ki(c-vp) -k o. (18)

For self-consistency, the solution of this equation must sat-

isfy the condition

o =kclk,v+k) <1. (19

As before, Eq(17) can be treated in terms of Laplace trans-

form to give

p(s) =k.c/[s+k,NsQ(s) + k ] (20)
or, taking into account Eq$4) and (19),

@ = k+V tk (21)

e1 1+koHE]+krtk

Note thatp(0)=¢,. The mean reaction time is, according to

Egs.(14) and(21),

_1+kovr

T ky+k ' (22)

where TF:I:|(O) is the first collision time.

E. Steady-state approximation

where ¢; and ¢, are, as before, the solutions of E@®)
(¢1< ¢,). The mean reaction time can be found by the for-
mula

¢1

1Jo
which yields
1
= M{[l +Kv7e(l - )]
-[1+kovre(1 —¢2)]|:]_ +M |n(1 _ﬂ):|}
$1 ©2
(27)

When the amount of receptor, multiplied by the factor
¢1, 1S negligible in comparison with the total amount of
ligand (¢;v<<c), Eq. (24) simplifies to

de/dt=k,(1 - ¢)[c— vre(de/dt)] — k_e. (28
The solution is
1
t(p) = otk
X{k-»VTF(P —[1+kvre(l- 901)]"1(1 - 2) } :
¢1
(29

where the limiting value of fractional occupanay, is given
by Eq.(8). The mean reaction time is

T=[1+Kme(l - @/2) (ke + ko). (30)

It should be noted that Eq&28)—(30) can also be obtained in
the frame of the so-called two-compartment madel.

[ll. APPLICATION TO PARTICULAR SYSTEMS

A. One-dimensional diffusion to the bottom
of a well

1. Memory function

Consider a well, of heigha, filled with the ligand solu-
tion [Fig. 1(a)]. The receptor is immobilized at the bottom, of

Under steady-state conditionit) is assumed to be con- 5rea, The only transport mechanism is supposed to be the
stant. More precisely, the reaction raét) must decrease iffysion characterized by a diffusion coefficiebt We start

much more slowly than the memory functi@it). In this

to analyze this system by finding the memory funct@®tt).

case, one can neglect all the “memory” effects and approXisjnce the motion of the ligand molecules in a horizontal

mateH(t) by a delta-function,

H(t) = 7=8(t). (23
Equation(5) takes then the form
de/dt=k, (1 - ¢)[c— vo — vre(de/dt)] - k_e. (24)

Now, it is more convenient to consider tirhas a function of
¢. The solution of Eq(24) [with initial conditiont(0)=0] is

direction has no influence on the reaction kinetics, the prob-
lem is essentially one-dimensional.

Suppose that a one-dimensional particle, of diffusion co-
efficient D, diffuses within the interva{0,a) with reflecting
boundaries. At time zero, the particle starts from the point
x=0. The quantityoG(t)dx coincides with the probability to
find the particle in the interval0,dx) at the time instant.
Another view on this system is that the particle moves along
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- 0T c |D - . n%a?
. . p(t)—;\/;|}L+22 (-1 ex;{—ﬁ)], (379

n=1

or, in an alternative representation,
2cD < (2n-1?72D )
‘ t)y=—2, exp————t/. 37b)
u 0= 223 g - H D (@

b Equations(379 and (37b) are equivalent. The series in Eq.
. (379 converges faster for smalland the series in Eq37h)
o, ® L m converges faster for large By integration of Eqs(37a and
. . Al s (37b), we get, respectively,
— 2c D) - < . na?
2R o)==/ = Vt+22 (- 1)”[“ exp(——)
- p ym n=1 Dt
(c)
FIG. 1. Assay geometries: One-dimensional diffusion to the bottom of a _ K ha
well (a); three-dimensional diffusion to a spherical be@; and three- na\/; erfC( \J'E[ ! (386\)
dimensional diffusion to a spdt). The receptor on the surface is indicated
by a fat line.
8ac 1 (2n-1)2%#°D
L . . _ <P(t)=?2 —2{1-9XF(-——2t .
an infinite chain of straight segments of lengthbut this pn-1(2n-1) 4 a
chain has been folded like a folding rule: the direction of (38D)

each segment is exactly opposite to its neighbors, so that the
entire chain has been collapsed to within the size of a singlélthough Eq.(38b) is simpler, the convergence of E@®83
segment. Now, the quantityG(t)dx is equal to the probabil- for practically interesting values df is better. The mean
ity to find the particle in one of the interval@na—dx,2na  reaction time can be found &sf. Eqs.(4) and(16)]

+dx) along the chain, where is an arbitrary integer

) 7= 7= H(0) = lim(aoG(s) - 1/s) = a%/3D. (39)
s—0
oG(t)dx= 2, g;(2na,t)2dx, (32)
k=—o0
where 3 1i L
. Linear approximation
91(x,t) = (47Dt)" Y2 exp(— x%/4Dt) (32 PP

] ) o o For the sake of simplicity, we will consider the solution

is the fundamental solution of the diffusion equation in one-sf the linearized kinetic equation only for a very large height
dimensional space. The memory function can also be repress the well: a— . The memory function in this case is re-

sented as duced to

aG(t) = (L/a)f(a/\DY), (33) oGy(t) = 1D, (40)

wheref( ) is a universal function that does not depend on th

parameters of the system Gts Laplace transform is

y - oGy(s) = 11\Ds. (42)
-7 — N2 ,2
fly)= Jar 1+ 2,%1 exp(-n’y’) (34) Substituting this expression into E0), we get
~ [~
The Laplace transform of E433) is p(s) =k.c/(s+kipVs/D +k ). (42)
Ué(s) - (l/\f'D—s)cotI"(a\s’%). (35) The denpm?naypr in Eq42) can be considered as a square
polynomial invs. If A; and\, are the roots of this polyno-
mial, Eq.(42) can be rewritten as
e . . . . k.c 1 1
2. Diffusion-controlled irreversible reaction p(s) = = - F . (43
N =N Vs=N; Vs—\,

For a diffusion-controlled irreversible reaction, the

Laplace transform of the reaction rate, according to Ex@. !N general\; and, are complex numbers with a negative
and(35), is given b)}l real part. We assume thaf # \,. The inverse Laplace trans-

form of the function

p(s) = (c/p)Distanta\s/D), (36) ) -

Fi(s) = 1/(\s=\ 44

where p=N/¢ is the surface density of the receptor. The 18 (Vs=2) (44
inversion of Eq.(36) yields is known to be
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= /_ 2 —_ “J’_ 1 2 1 R
Fi(t) = LNt + X exp(\2t)erfe(— At). 45 & =1 f do d(c0s )G RV2(1 = 05 1]

Thus, the expression in E43) can be easily inverted AmJ =0 Jeoso=-1

1 - expg— R?/Dt)
k+C = — .
bl = [y experto- Ay 82\ Dt 2
1 2
— \p expN2)erfo(- )\zv"jt)]. (4p) Herewe used a spherical coordinate system with the origin at

the center of the bead is the bead radius. The simplified
In order to obtain the fractional occupang(t), one can memory function, although not suited for the kinetic equa-
[keeping in mind Eq(13)] make use of the following pair of tion [Eq. (3)], is quite useful in the case of a diffusion-

the “image” and “original” functions: controlled irreversible reaction. In such a reaction, the ligand
. - molecules cannot penetrate inside the bead anyway, because
Fa(s) = 1/s(Ns— 1), (47)  they are all captured at the surface. It is, however, important

to take into account explicitly that the space occupied by the

1 -1 bead is free from the ligand molecules at time zero. Let
- = 2 —\t) = =
Fa(t) = A expiAerfa(- Avi) N (48) c'(r,t) be the time-dependent ligand concentration in the ab-
_ _ _ sence of a reaction as a function of the distand® the
The required expression fax(t) is center of the bead, which is assumed to be permeable. Then
the initial conditions are
_ k+C 1 2 r 1
(p(t) = VW exd)\lt)erfc(— )\1\/t) - W C/(I',O) =0 ifr<sR,
1 2 L =¢c ifr>R (53)
- exp\st)erfo(— \,\t) + | (49) =cmr :
2 2

For t>0, the functionc'(r,t) at the bead surface can be
The limiting value of the fractional occupancy ig; found as
=k,c/k_ [cf. Eq. (19)]. The mean reaction time is not de- om 1 -
fined. The substitution of Eq42) into Eq. (14) leads to a c'(Rt) :Cf de d(cosa)f r2 dr
divergence:r=c, $=0 cos f=-1 r=R

It should be noted that, in practice, it is inconvenient to
evaluate expressions in Eqg6) and (49) directly as they

X g3(VR2 + 12— 2Rr cos6,t)

are, because of the overflow/underflow errors caused by the c Dt R?
functions exg) and erf¢ ) at larget. This problem, how- "RV 4 1-ex " Dt
ever, can be easily avoided by using the formula
c R
1 1 1-3 1-3-5 + = 1+erft<,=)} (54)
2 —_— |
expxderfoX) = ——=|1-—S+—>——-——+ ... |, 2[ /Dt
PO)ero) =~ =1 1= 25+ 25~ e '

Since in the presence of a reaction the local concentration at

(50) the bead surface should vanish, we can write Eq. (9)]
where Réx) is assumed to be large and positive. ¢'(Rt) - NG'(t) = p(t) = 0. (55)
Hence, in terms of Laplace transforms,
B. Three-dimensional diffusion to a sphere p(s) = é’(R,s)/Né’(s). (56)

1. Diffusion-controlled irreversible reaction Substituting Eqs(52) and (54) into Eq. (56), we get

Consider a spherical bead, covered with the immobilized ., _ Ne
receptor, in a large volume of ligand soluti¢rig. 1(b)]. P(S) = (4mDRAN)(1/s + RIDs). 57
Imagine for a while that the ligand molecules can freelyThe inversion of Eq(57) yields
move through the space occupied by the bead. The memory _ [
function for this simplified case3’(t), can be easily found. p(t) = (47DRAN)(1 +R/V7DY), (58)
Suppose that at time zero a ligand molecule is positioned at —
the topmost point of the bead. Its time-dependent concentra- ¢(t) = (4rDRAN)(t + 2Rt/ 7D). (59)

tion at any observation poiritn the absence of reactipi®  Equation(59) is the well-known Smoluchowski formuf&.It

given by the fundamental solution of the diffusion equationghoyid be recalled that in our case it holds only dgt) < 1.
in three-dimensional space

gs(x,t) = (47Dt)"*%exp(- x?/4Dt), (51)

. . . . .. 2. Linear approximation
wherex is the distance from the starting point. The “simpli- P

fied” memory functionG'(t) is just the average of;(x,t) The correct memory function, for an impermeable bead,
over all observation points belonging to the bead surface, can now be easily found by comparison of Eq4) and(57)
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1 C. Three-dimensional diffusion to a spot

47R\D(Vs+ \D/IR)’

Gols) = 1. Memory function
Consider a circular spot of receptor molecules on a flat
1 1 D Dt VDt reflecting boundary between a solid phase and a large vol-
Go(t) = 477R2\’6[ﬁ "R exp<¥>erfc< )} : ume of ligand solution. From a practical point of view, this is
the most interesting case relevant for the microarray tech-
nigue. However, in the frame of our formalism it can be
treated only approximately, because the reaction conditions
on the spot depend on the distance to its center. The memory
function is, according to its formal definition, the function
k+c(\e"5/R+ Vs) 29;(x,t) [Eq. (51)] averaged over all pairs of points belong-
sVs+ (k+p/\",5+ vB/R)s+ k Vs+k \DIR’ (62) ing to the spot, With the argumeutbeing the distance be-
tween the points in each pair

(61)

Substituting Eq(60) into Eq.(20), we get the Laplace trans-
form of the reaction rate in the linear approximation

p(s) =

where p:N/47TR2 has, again, the meaning of the surface 5 R 5
. . . . 1 T T
density of the receptor. This expression can be inverted by Gy(t) = f d¢1J fldf1J dé,
r

the method already usédf. Eq.(42) and the text thereaftgr (7R)?) 4 =0 =0 $,=0
Let N4, Ny, andX be the roots gf the denominator in H§2) R
considered as a polynomial i¥s. Then Xf 5ty - 205(\F2+ 12— 2111, COS ).
DIR+\ ot
p(s) = k+cl A L = +cyc. perm/, (70)
A2=N)Ng3=A)(VsS—Ay)

(63) Here, we use a polar coordinate system with the origin at the
center of the spoRR is the spot radius. The factor 2 preced-

I~ 2 K ing g;( ) accounts for the fact that only half of the space is
p(t) = MC{ (VD/R+ Ay expihat)erfol= Ay available for diffusion. Although a closed form of ET0) is
(2= A)(A3=Ny) not known, this equation can be used to obtain a very impor-
tant parameter of the system, namely, the first collision time
+cyc. perm/, (64) 7 divided by the volumeV of ligand solution
R * 8
I~ IV=Gy(0)= | Gy(t)dt= . (72
VD/R+ )\, 5 = F 0 f 0 37DR
t) =k,c exp(\jt)erfo(— AVt 0
e(t) =k, {()\2_ ) (hs— )\1))\1[ xp(Nft)erfa(— N V1)

It should be recalled that E¢71) was obtained in the ap-
- 1]+ cyc. permy. (65) proximation of uniform reaction conditions over the spot.
The exact value of/V is known to b8

Here, by “cyc. perm.” we denote the terms obtained from the _
first one by cyclic permutations of the indices of 7e/V = 1/4DR. (72)

The mean reaction time can, in principle, b_e found by The difference between the two values 8V is ~8%,
the standard formuldEq. (22)]. However, this formula \hich can serve as an estimate of accuracy of our approach
should be adapted for a very large volume of ligand solutions; this system.
V—e. In this caseGy(t) =Ho(t)/V, so that The function given by Eq(70) is very inconvenient to
use in the kinetic equation. Instead of using it, we wish to
construct an approximate memory function tliatis suffi-
ciently simple,(ii) similar in form to Eqs(60) and(62), (iii)
provides the same value af/V as the true memory function
[Eq. (71)], and (iv) has the correct asymptotic behavior at

Go(0) = Ho(0)/V = 7/V. (66)

Taking into account Eq66) and neglecting the terrk, v in
comparison withk_, we can rewrite Eq(22) as

7=[1+kNGy(0)J/k_.. (67)  small and large times
This equation can, of course, be derived directly from Eqgs.  0Go(t) =20,(0,t) whent — 0, (73
(14) and(20) with ¢;=k,c/k_. For the memory function un-
der consideratiofiEq. (60)], we have Go(t) = 2g5(0,t) whent — . (74)
Go(0) = 1/4mDR. (68)  Here o=nR? is the area of the spot argj() is defined by

Thus, the mean reaction time is, according to E§3) and Eq. (32). A function satisfying these conditions is

(68), . 1 ( 1 1 )
+ y

GO(S) = 2 [~ — —
7=(1+k,pR/D)/K_. (69) 27RYD\Vs+ ¢, vs+é,

(79

Downloaded 29 Mar 2010 to 193.174.57.208. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



214715-7 Kinetics of protein binding in solid-phase immunoassays: Theory J. Chem. Phys. 122, 214715 (2005)

1 ) kec[(Vs+a)?+ 7]
Go()=——=1 —=-R 2erfo(é\0)] ¢, p— _
o) WRZ\E{ Vart L explgertalsyy )]} PE [(Vs+ a)?+ B2(s+ k) + (k+p/\’6)(\”5+ a)s’
(76) (89)
where -
. . _ o VIO + @)+ BN expiNiterfo- Ab)
Gatip GEasip 77 P =kie A1 =A2)(A1=Aa) (A1 =Ny
a =[487/(256 - 97%)]VDIR, (79) + eye. perm @5
B=(1-972128"?q, (79
with i being the imaginary unit. o) =k, [\ + @)® + Bllexpberfa- Apvt) - 1]
The corrections due to a finite volume of the ligand so- AN = N) N = Nz)(N1 = Ny)

lutions can be found as follows. Suppose that the receptor

spot is positioned exactly in the center of the bottom of an + cyc. perm}. (86)
incubation chamber that has the form of a parallelepiped

with the dimensiondengthx widthX height=b X b x a [Fig. Here p=N/mR2 and A, \y, A3, and\, are the roots of the
1(c)]. We assume thd® <a andR<D, so that at the times of denominator in Eq(84) considered as a polynomial itls

the ordera?/D andb?/D the functionGy(t) is already close [cf. Egs.(63—(65)]. The mean reaction time can be found by
to 2g5(0,t). Using the three-dimensional analogue of Ed-means of Eqs(67) and (72)

(33), we can write
— — 7=(1+ 8k, pR/3wD)/k_. (87)
G(t) = Gy(t) — 2g5(0,t) + (1/ab?) f(a/\Dt)f?(b/2VDt),  (80)

where the functiorf() is defined by Eq(34).
IV. NUMERICAL SOLUTION
A. Computational scheme

2. Diffusion-conirolled irreversible reaction In general, the full(nonlineay kinetic equation can be

Assuming thal/— = and substituting the functioéo(s) so_lved.only numerically. In terms of the reaction rau)
[Eq. (75)] into the general solution of the kinetic equation for =¢(), it has the form(cf. Eq. (3)]

the diffusion-controlled irreversible reactigieq. (12)], we t t
get p(t) =k, 1-J p(t")dt’ C-NJ G(t-t')p(t)dt’
0 0
2= S| 3TOR, 97°R\D :
PE=N| " as 128s -k j p(t)dt’. (88)
0
(128-92)7R2D 1 . . . . .
+ 128 = |, (81 The numerical solution of this equation was obtained as fol-
aty\s lows. Letty,t;,t,, ... denote the control points along the time
, — axis: t5=0, t,<t,;1, (n=0,1,2,..). Within each interval
p(t) = (c/N)[(37*/8)DR + R*\ DIt (t,,tnq), the function p(t) was approximated asp(t)
—(1- 972129 R\ Da exp(a?t)erfd( avq)]’ =p, exd —yn(t-t,)], wherep, andy, are constants. Note_ that
po=kiC and pps1=pPn XA~ Yn(the1—ty)]. Thus, the required
(82) solution is defined by a sequence of thevalues. When the
first m terms of this sequendey, 1, - - . ,¥m-1) Were known,
_ m
¢(t) = (c/N)}{(3*/8)DRt+ (97?/64)R?\ mDt the next one,y,, was found by numerical solution of the
+(1 - 97%/128)(#R2\D/a)[1 equation
- expla®)erfo(a\t) ]} Prn €XH~ Yi(tms1 — tm)]
1
e(t) < 1. (83 = k+<1 - f p(t)dt)
The inaccuracy of Eq:82) does not exceed 8% as compared 0
with a more rigorous solution that can be found in Refs. 9 1
and 13. X{c—=N Gt — t)p(t)dt
0

tm+1
-k J p(t)dt, (89)

3. Linear approximation 0

In the linear approximation fovY — o, we have, accord- where the integrals containingt) were considered as func-
ing to Egs.(20) and(75), tions of y,,. The convolution integral was evaluated numeri-
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cally. The step sizdi.e., the interval between the control
pointg was controlled adaptively by carrying out two steps
of an identical size\t and comparing the result with that of

a single step of the sizeA2. This computational scheme
proved to be stable, in the sense that the solution was not
significantly affected by the choice of the three parameters
that definedi) the accuracy of numerical integratid(,) the
accuracy of finding the root of Eq89), and (iii) the step
size—provided that these parameters were sufficiently small.

4

B. One-dimensional diffusion

The numerical computations for the one-dimensional
diffusion to the bottom of a wellFig. 1(a)] were performed
for the following set of parameters. The rate constants were
k,=5.3x10° 1/M s andk_=3.2Xx 10™* 1/s, the diffusion co-
efficient of the ligand moleculeB=1x 107 cn¥/s, the re-
ceptor surface density=1.5x 10! mole/cnf, and the
height of the incubation chambar=0.3 cm. These param-
eters correspond approximately to the microtiter well assay
with the human interferon-as a ligand and its monoclonal
antibody as a receptdt. The initial ligand concentratior
was varied over a large range. The receptor was assumed to
cover the entire bottom of the incubation chamber. The
memory function was defined by Eq83) and (34).

The examples of numerical solution of E@®8), for ¢
=0.1y, c=v, andc=10v, are displayed in Fig. 2thick solid
line also denoted as ling).1The quantityr is equal toN/V
=p/a=5.0x 108 M. In the same figure, the following ana- Timet, s
lytical curves are shown for comparison. Linédbtted ling
Corresponds to a diffusion-controlled irreversible reactionF!G. 2. Reaction rate as a function of timet for various initial ligand

: : P : : concentrationg. The receptor is immobilized at the bottom of the incuba-
[Eqs' (376‘) and (37b)]' Line 3 (thm solid Ime) is the linear tion chamber of heigha=0.3 cm. The other parameters are the rate con-

QpprOXimaﬂon in the limia— o [Eq. (46)]: Lin_e 4 (dashed  siantsk,=5.3x 16F 1/M s andk =3.2x 107 1/s, the diffusion coefficient
line) represents the steady-state approximation. In the latteb=1x107cn?/s, and the receptor surface densityp=1.5

case, the dependencemt)=de/dt ont is given parametri- X 10 mole/cn?. The initial ligand concentratioais indicated in the units
. _.2 _ of v=p/a=5.0x 108 M. Line 1 (thick solid ling is the numerical solution

cally by Eqs.(24) and(25), with 7z=a°/3D=0.3x 1P s[see Eq. (88) with G(t) defined by Eq(33). Line 2 (dotted ling is given by

Eq. (39)]. The quantitye plays the role of the parameter. Egs. (378 and (37b) (diffusion-controlled irreversible reactiork, — ).

The corresponding curves for the fractional occupapcy Line 3(thin solid ling is given by Eq(46) (linear approximation in the limit
are shown in Fig. 3. The numerical solution is represented bgl,—’m)-_uge 4 (dashed lingis given parametrically by Eqs24) and (25)
line 1 (thick solid line, the solution for a diffusion- M 7-=a/3D (steady-state approximation
controlled irreversible reactidrEgs.(38a and(38b)] by line
2 (dotted ling, the linear approximation in the lima— o trationsc (i.e., c<w). Although the initial behavior of curve
[Eqg. (49)] by line 3 (thin solid line, and the steady-state 2 is not correciFig. 2), this can hardly be observed experi-
approximation Eq. (25)] by line 4 (dashed ling mentally (Fig. 3).

It should be recalled that the functions represented by In Sec. Ill A we did not consider the linearized kinetic
curves 2 and 3 are proportional to the initial ligand concen-equation Egs.(17) and(20)] with the memory function for a
trationc. Thus, in logarithmic scaléig. 2), an increase of  well of a finite heighta [Egs. (33)—(35)] because of math-
does not change the form of these curves; it only shifts thenematical complexity. It is clear, however, that the solution
upwards. By derivation of curve 2, the backward reactionwould be close to curve 3 at smaland to curve 2 at large
was completely ignored. However, it was taken into consid+ (for the given set of parameters
eration that the number of ligand molecules is fir(is the When the concentratioa is greater that, the limiting
height of the incubation chambaa, is finite). On the con- fractional occupancy, is approximately equal to unity. In
trary, curve 3 was obtained under the assumption that this case, curves 2 and 3, though completely wrong at large
—o0; but the backward reaction was accounted for. Sincaimest, can serve as useful estimates of the initial course of
curve 2 lies lower than curve @Gor t> 7¢), the role of the the reaction. They are valid almost in the whole region
backward reaction for the given set of parameters is neglie < ¢4, if c> v [Fig. 3(c)].
gible. Therefore, the diffusion-controlled irreversible reac- It is interesting to note that the steady-state approxima-
tion (curve 2 serves as a good approximation at low concen+ion (curve 4 proved to be reasonably good at low concen-

Reaction rate p, s
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by FIG. 4. Reaction rate as a function of time for various initial ligand
& concentrationg. The receptor is immobilized within a circular spot of ra-
g diusR=0.005 cm at the center of the bottom of an incubation chamber. The
§ dimensions of the incubation chamber demgthx widthX height=bX b
- X a, wherea=0.3 cm andb=0.5 cm. The other parameters are the rate
] constantsk,=5.3x10° 1/M s andk_=3.2x 10* 1/s, the diffusion coeffi-
] cient D=1x10"cn?/s, and the receptor surface density=1.5
§ X 107 mole/cn?. The initial ligand concentratioais indicated in the units
w of K4=k_/k,=6.0x 1071° M. Line 1 (thick solid ling is the numerical solu-
. tion of Eq.(88) with G(t) defined by Eq(80). Line 2 (dotted ling is given
0 2 4 6 8 10 12 by Eqg.(82) (diffusion-controlled irreversible reactiok; — ). Line 3 (thin
(© Timet, 10°s solid line) is given by Eq.(85) (linear approximation in the limia,b— o).
! Line 4 (dashed lingis given parametrically by the Eq&8) and (29) with
FIG. 3. Fractional occupancy as a function of time for various initial ~ 7r=ab’G(0) (steady-state approximatipn

ligand concentratiore. The reaction conditions are the same as in Fig. 2.
Line 1 (thick solid line corresponds to the numerical solution of Eg3).
Line 2 (dotted ling is given by Eqs(38a and (38b) (diffusion-controlled ~ and c=10Ky, whereKy=k_/k,=6.0X 1079 M is the equi-

irreversible reaction Line 3 (thin solid ling is given by Eq.(49) (linear librium dissociation constant. The following analytical re-

approximation. Line 4 (dashed lingis given by Eq.(25) with 7==a%/3D It | h  the diffusi trolled i ibl

(steady-state approximatin sults are also shown: the diffusion-controlled irreversible re-
action[Eqg. (82)] is represented by line @otted ling, the

linear approximatiorfEq. (85)] by line 3 (thin solid line,

and the steady-state approximation by linédéshed ling

Line 4 is given parametrically by the Eq&8) and (29),

which were derived under the condition tha&c/ ;. The

) _ - use of these equations in the present case is justified, because

C. Three-dimensional diffusion to a spot v=N/V=pnR2/al?=0.026,, and the quantityc/ ¢, is al-

The numerical computations for the three-dimensionaWvays greater thak,. For the first collision time we used the
diffusion to a spo{Fig. 1(c)] were performed for the same value 7:=3.99x 10" s, which was obtained numerically as
set of parameters as in Sec. IV B. In addition, two otheral?G(0), with G(t) defined by Eq(80). For comparison, the
parameters were used that follow. The bottom of the incubaanalytical expressiofEq. (71)] gives 7-=4.05X 10’ s. (The
tion chamber was assumed to be a square with the tside difference between the two values gf is not principal, but
=0.5 cm. The spot of radiuR=0.005 cm was positioned in we used the more exact one, in order not to mix up the

trationsc [Fig. 3(@)]. Only when the concentration becomes
high (c>v), the steady-state approximation fails completely

[Fig. 3(c)].

the center. The memory function was defined by @4). inaccuracy of the formula with the inaccuracy of the param-
The numerical solutions in terms of the reaction e  eter value.

are displayed in Fig. 4thick solid line or line 1} for three The curves for the fractional occupangyt) are shown

values of the initial ligand concentration=0.01K,, c=Kg, in Fig. 5. Line 1(thick solid line corresponds to the numeri-
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04} L7 4 = FIG. 6. Dependence of the functiqtt) on the dissociation rate constaat
<l ¢ = 100K, i (upper framg on the association rate const&ntmiddle frame, and on the
0.2 yas spot radiusR (lower framg. The numerical solutions are shown with the
0.0 EE—L 1 1 1 ! thick solid lines. Line A, presented in all frames, corresponds to the default
2 4 6 8 10 12 set of parameters that are given in the legend of Fig. 4. The ligand concen-
(c) Timet 10°s tration isc=6.0x 1071* M. For each of the other curves, one parameter has

a nondefault value. Upper frame: Line X,=3.2x10%1/s; line B, k_
=3.2x 10732 1/s; line C,k.=3.2x 102 1/s. Middle frame: Line Ak,=5.3

X1 1/Ms; line D, k,=5.3x10* 1/Ms; line E, k,=5.3x10°* 1/Ms.
Lower frame: Line F,R=0.001 cm; line A, R=0.005cm; line G,R
=0.025 cm. For some curves, the corresponding steady-state solution is
given by the dashed line.

FIG. 5. Fractional occupancy as a function of time for various initial
ligand concentratiore. The reaction conditions are the same as in Fig. 4.
Line 1 (thick solid line corresponds to the numerical solution of Eg3).
Line 2 (dotted ling is given by Eq.(83) (diffusion-controlled irreversible
reaction. Line 3(thin solid line is given by Eq(86) (linear approximation

Line 4 (dashed lingis given by Eq.(29) with TF:abzé(O) (steady-state

approximation At high ligand concentrationgc>K,), saturation of

binding sites(¢,=~1) becomes the main reason for slowing

cal solution of the full kinetic equation, line(@otted ling to ~ down the reaction. In this case, only the initial part of curves
the diffusion-controlled irreversible reactigiq. (83)], line 2 and 3 is relevant. However, this relevant part can be as
3 (thin solid line to the linear approximatiofEq. (86)], and  large as almost the whole regign< ¢, [Fig. 5c)].
line 4 (dashed ling to the steady-state approximatipBq. For the given set of parameters, the steady-state regime
(29)]. It should be mentioned that E(5) yields a curve that develops after~10* s. At this point, curve 4 merges with
would be indistinguishable from line 1 in Figsi@and 8b)  curve 1(Fig. 4). The steady-state approximation describes
and from line 4 in Fig. &). the further course of the reaction very well. If the mean

Note that curves 2 and 3 were obtained in the assumpreaction time exceeds 48 (which is the case at low and
tion thata,b— o or, in other words, that the supply of ligand intermediate concentratiors, this approximation leads to
molecules is inexhaustible. If the limited number of ligand sufficiently precise resultgFigs. 5a) and gb)].
molecule were taken into account, curve 2 would lie lower at  Figure 6 illustrates the dependencies of the numerical
the times exceeding-~ 10’ s. However, the backward reac- solution on the dissociation rate constént on the associa-
tion, which is accounted for by curve 3, comes to play antion rate constank,, and on the spot radiuR (thick solid
important role already at the times10*s. Hence, at low lines). For most of the curves, the corresponding steady-state
ligand concentrationsc<K,), the reaction reaches the dy- solution[Egs. (28) and (29)] is also shown(dashed lines
namic equilibrium due to the high rate of the backward re-The steady-state approximation proved to be very good at the
action, while the supply of ligand molecules is still far from time scales of practical interest. However, the simplified for-
being exhausted. For that reason, curve 2 fails to predict theulas[Eqgs.(28) and(29)] do not hold for the increased spot
course of reaction correctlyf t>10* s), whereas curve 3 is radius R=0.025 cm(cf. curve G, because the ratig,v/c
guite a good approximatioffig. 5a)]. =0.38 is not sufficiently small. In this case, one should rather
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use Egs(24) and (25), which are free from the assumption The stirring does not change the form of the basic kinetic
¢v<c. All the data presented in Fig. 6 correspond to quiteequation[Eq. (3)]. The problem is to find an appropriate
a low concentratiort=6.0x 101! M, so that the inequality memory function. It is clear that such a function will decay
c<<Ky is always satisfied. Under these conditions, the anafaster than in the case of pure diffusion. Hence, the steady-
Iytical linear approximation should hold. Indeed, one canstate approximatiofEq. (23)] will be even more justified.
easily verify that Eq(85) practically exactly reproduces the The effect of stirring results essentially in a decrease of the
thick solid curves in Fig. 6, except for line G correspondingfirst collision timerz, which can be treated as a new experi-
to the large spot radius. In the latter case, the solution givemental parametefsubstituting in this role the diffusion co-
by Eq. (85) follows the dashed line at large efficientD).
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