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Ordering genetic markers or clones from a genomic
library into a physical map is a central problem in
genetics. In the presence of errors, there is no efficient
algorithm known that solves this problem. Based on a
standard heuristic algorithm for it, we present a
method to construct a confidence neighborhood for a
computed solution. We compute a confidence value for
putative local solutions derived from bootstrap repli-
cates of the original solution. In the reliable parts, the
confidence neighborhood and the computed solution
tend to coincide. In regions that are ill-defined by the
data, the neighborhood contains additional reason-
able alternatives. This offers the possibility of design-
ing further experiments for the badly defined regions
to improve the quality of the physical map. We analyze
our approach by a simulation study and by application
to a dataset of the genome of the bacterium Xylella

fastidiosa. © 2000 Academic Press

INTRODUCTION

The goal of physical mapping is to order a set of
genetic markers or a library of cloned fragments of
DNA according to their position in the genome. Phys-
ical maps are powerful tools for localization and isola-
tion of genes, for studying the organization and evolu-
tion of genomes, and as a preparatory step for efficient
sequencing. There are a wide variety of experimental
techniques for physical mapping. The leading methods
are clone—probe hybridization mapping (Hoheisel et
al., 1993), STS mapping (Hudson et al., 1995), restric-
tion mapping (Coulson et al., 1995), radiation-hybrid
mapping (Slonim et al., 1997), and optical mapping
(Lin et al., 1999). Here we focus on a physical mapping
protocol based on hybridization experiments (Hoheisel
et al., 1993; Scholler et al., 1995; Hanke et al., 1998).

The procedure can be described as follows. We start
with a clone library C of clones that correspond to
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subintervals of a larger contiguous piece of DNA G, all
having approximately the same size. From C we select
a subset P C C of probes P. Each probe p; € P is labeled
and tested against the clone library. If a clone contains
DNA complementary to the probe sequence, the probe
will hybridize to this clone and a positive hybridization
signal can be detected. The result of these experiments
is a binary clone/probe hybridization matrix A = (a;)
where

__[1 if probe p; hybridizes to clone c;;
&j-710 otherwise.

The physical mapping problem is to find the order of
the probes P that corresponds to their real position in
G. A subsequent problem would then be to extend this
order to the whole clone library. Here, we do not deal
with the latter question, though. The physical mapping
problem can be translated into the following combina-
torial problem (Greenberg and Istrail, 1995): Given a
hybridization matrix, find a permutation of the col-
umns (probes) such that the reordered matrix has the
consecutive ones property, i.e., every row has at most
one block of consecutive ones.

Unfortunately, physical mapping by hybridization
experiments is highly influenced by errors and ambi-
guities: there are high rates of false positive and neg-
ative hybridization signals and inconsistent hybridiza-
tion signals caused by repetitive sequences, chimeric
clones, or clones containing deletions. Additionally,
there is variation in library coverage and in clone size.
Note that even in the error-free case ambiguities may
occur due to multiple solutions to the consecutive ones
problem.

In the absence of errors, all admissible probe orders
can be found and characterized efficiently using the
PQ-tree data structure defined by Booth and Lueker
(1976). However, in the presence of noise, there is no
generalization of the PQ-tree approach, and the prob-
lem becomes ill-defined. The major practical problems
in hybridization mapping are the management and
visualization of large datasets, the efficient selection of
probes to minimize the number of hybridization exper-
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iments, and the detection and resolution of inconsis-
tencies in the hybridization data.

There are several computational approaches of STS-
content map assembly that could be used for our pro-
tocol. Mott et al. (1993) developed the programs PRO-
BEORDER, BARR, and COSTIG, which use simulated
annealing and tree-search techniques to compute a
map based on a maximum-likelihood distance measure
between neighboring probes. CONTIGMAKER was de-
veloped by the WI/MIT group (Daly et al., 1994). The
program clusters markers into double-linked contigs.
These contigs are subsequently ordered using genetic
and radiation-hybrid data. ODS is a program designed
by Cuticchia et al. (1992) using simulated annealing to
order a clone set according to a binary clone finger-
print. CONTIG EXPLORER is a program for explor-
atory sensitivity analysis and interactive map assem-
bly (Nadkarni et al., 1996). SEGMAP (Green and
Green, 1991) is an interactive graphical tool for ana-
lyzing STS-content data. It computes an optimal
marker order by exhaustively rearranging some sup-
plied suboptimal orders. These program packages typ-
ically construct a preliminary probe order that opti-
mizes a special objective function and offer the
possibility of interaction to improve this order.

Additional desirable features of a physical mapping
algorithm are (according to Setubal and Meidanis,
1997, p. 152) that it should distinguish “good” parts of
the solution from “not so good” parts and that if several
candidate solutions meet the optimization criteria, all
of them should be reported. This could greatly facilitate
further experiments.

In our attempt to add these features to the existing
algorithms we assess the reliability of putative probe
configurations. We use a bootstrap approach for this
purpose. Bootstrap resampling was introduced by
Efron (1979) as a computer-based method for assessing
measures of accuracy to statistical estimates. In bioin-
formatics it is used in phylogeny (for an introduction,
see Felsenstein, 1985) and also in linkage analysis
(Liu, 1998). In physical mapping, Wang et al. (1994)
used this technique to determine the reliability of a
clonal ordering. Here we present a strategy that relies
on the solution of a conventional physical mapping
algorithm but extends this approach by creating a suit-
able neighborhood of this solution.

In principle, our strategy will work with every phys-
ical mapping algorithm that produces as output a sin-
gle probe order and that is fast enough to be repeated
several times. For concreteness we focus on an algo-
rithm that uses a vector—-TSP approach (Cuticchia et
al., 1992; Alizadeh et al., 1995). We resample the clone
library and create bootstrap replicates 7, b =1, .. .,
B of the original solution #. For each probe pair (p, q)
with p # q we define the bootstrap value b((p, q)) € [0,
1] as the frequency of the consecutive occurrence of p
and q in the bootstrap replicates. We represent these
values in the bootstrap graph GB, a graph on the probe
set with the bootstrap values as weights. The true
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probe order corresponds to a Hamiltonian path in GB
enumerating the probes in the order of their occurrence
in the genome.

Based on the bootstrap graph GB we define a confi-
dence neighborhood N of 7. In the parts of the probe
order 7 that are well supported by the data the corre-
sponding bootstrap values are high and N does not
differ from . In regions that are not so good the boot-
strap values are small and N contains additionally
several other “reasonable” probe configurations. Using
these configurations one can derive for the “bad” re-
gions alternative probe orders that are useful for the
design of additional experiments.

The rest of the paper is organized as follows. Under
Materials and Methods we explain the different com-
ponents of our approach. We describe the algorithm for
map construction and the bootstrap strategy. Then we
define the confidence neighborhood. Under Results we
present a simulation study in which we determine the
necessary number of bootstrap replicates and evaluate
our approach. We also apply our method to the data set
of the bacterial genome of Xylella fastidiosa. Under
Discussion we give an assessment of the approach and
some directions for future development.

MATERIALS AND METHODS

Basic algorithm for map construction. We focus on ordering the
probe set P. To compute the order of probes in P we use a vector-TSP
formulation (Cuticchia et al., 1992; Alizadeh et al., 1995) based on
the Hamming distance between the columns of the clone/probe hy-
bridization matrix A. The probe set P is extended by a dummy probe
po to yield P := P U {p,} and likewise the hybridization matrix A is
extended by a dummy column consisting only of zeros to give A. We
construct a complete weighted graph GH = (P, E, c) in which weight
c((pi, py)) is defined as the Hamming distance of columns i and j in A.
Now the optimization problem consists of finding a Hamiltonian
cycle of minimal weight in GH. Such a minimal Hamiltonian cycle
corresponds to a probe order that minimizes the number of blocks of
consecutive ones in the hybridization matrix with reordered probes.
This order is supposed to approximate the true solution (Greenberg
and Istrail, 1995; Xiong et al., 1996). For the minimization we use the
simulated annealing algorithm of Press et al. (1992).

Bootstrap resampling. To simulate independent replications of
the physical mapping experiment in silico, we resampled the data-
set, using a bootstrap strategy similar to the approach of Wang et al.
(1994), but with the roles of clones and probes interchanged. We
created a new hybridization data matrix by selecting |C| times with
replacement from the rows of A. This corresponds to repeating the
hybridization experiments using the same set of probes P, but cre-
ating a new clone library by resampling from the original clone
library C. This procedure was repeated B times to obtain B re-
sampled datasets.

For each of these resampled data sets, we computed a correspond-
ing probe order #*" using the above described simulated annealing
approach (Basic algorithm for map construction). Let II* be the set of
these B permutations. For each pair of probes (p, q) with p, g € P and
p # gq we define the bootstrap value b((p, g)) as the relative frequency
of their consecutive occurrence in I1*, i.e.,

* ET1* : [rkp.(p) — rko-(q)] = 1
b((p, q)) = " Ir (g) rk(@] = 1

forp,qeﬁandpiq.
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FIG. 1. Visualization of CI(0, 0.8). The edges adjacent to node O
are sorted according to their bootstrap values. The edges that belong
to E(m) are colored green. CI(0, 0.8) consists of all edges that are
colored blue or green.

Here rk.-(p) is the rank of p in #*. One can easily see that b((p, 0))
= b((qg, p)) and b((p, g)) € [0, 1]. Using the fact that each p € P has
exactly two different neighbors in each 7* € I1*, we obtain for each
peP

>, b((p, @) = 2. [1]

q

B,

The above-defined bootstrap values are represented in a weighted,
complete bootstrap graph GB = (P, E, b). In GB a probe order =
corresponds to a Hamiltonian cycle—in the following we use E(w) C
E to indicate the corresponding edge set.

Confidence neighborhood. To represent the variability of a solu-
tion 7 of the basic algorithm for map construction, we define a
neighborhood N of = in the bootstrap graph GB. Given , the boot-
strap graph GB = (P, E, b), and a confidence level y € [0, 1], we
construct for each probe p € P a set of adjacent edges Cl(p, y) C E.
To compute CI(p, v), the edges adjacent to the node p are sorted.
First the edges e,, e, € E(m) of the original solution 7 are included.
Then, additional edges are taken into Cl(p, y), heavier edges before
lighter ones, until the summed bootstrap values of the edges in CI(p,
vy) exceeds 2y (see Fig. 1 for a visualization). Edges with equal
bootstrap values may occur during this procedure. Although the
resolution of draws could be based on further analyses of the data, we
found a random selection sufficient.

By construction, CI(p, y) is a minimal set of edges adjacent to p
that contains the adjacent edges of E(w) and fulfills the condition
Zeecipy D(€) = 2. The motivation is that, if one assumes that the
bootstrap value of an edge adjacent to p corresponds to its “proba-
bility” of being part of the true solution, and that edges are indepen-
dent, then for y € (0.5, 1] we can interpret CI(p, y) as a 100 - 2y —
1)% confidence interval for the true edges adjacent to p.

We define N(y): = U ,sCI(p, v). By definition,

N(y1) C N(yp) for y; =y, and y, € [0, 1]. [2]

Thus we have a monotonically increasing parameterized candidate
set for the true solution. For y = 0 the set N(0) = E(r) corresponds
to the original solution 7, while for y = 1 we have N(1) = E(m) U {e €
E : b(e) > 0}. A simulation study (see Confidence Neighborhood)
shows the relation between the size of N and the number of true
edges included in N with respect to y. A visualization of N(0.95) for
the dataset of the bacterial genome of X. fastidiosa is shown in Figs.
6 and 7.

Computation. The algorithms for map construction, map visual-
ization, and bootstrapping were written in C++ in the LEDA 3.8
environment (Melhorn and Naher, 1995). To solve the vector-TSP,
we adapted the simulated annealing routine of Press et al. (1992).
Diagrams were done in MATLAB. The complete computation time
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for a dataset consisting of 200 probes and 1000 clones and a resam-
pling rate of B = 1000 on a SUN Ultra Enterprise 450 with 400 MHz
was approximately 13.5 h.

RESULTS

To test the behavior of our algorithms, we performed
a simulation study. We created 50 artificial raw data-
sets mimicking the parameters of previous mapping
projects (Hoheisel et al., 1993; Scholler et al., 1995;
Hanke et al., 1998). A linearized genome G of size |G| =
2000 kb was used to create a clone library of 1000
clones of equal size, | = 40 kb. This represents a 20-fold
clone coverage. Clone start points were chosen uni-
formly from the interval [1, |G| — | + 1]. We selected
200 clones of the clone library and used them as probes
corresponding to a 4-fold probe coverage. For each
probe, a virtual hybridization experiment was simu-
lated. A hybridization signal of a clone in the clone
library was detected if the probe and the clone showed
an overlap of more than 2 kb. Additionally, we added to
the hybridization data false positive signals at a rate of
1% and false negatives at a rate of 5.5%.

How Many Bootstrap Replications Are Necessary?

There is no general rule to determine how many
bootstrap replications B are necessary. For confidence
intervals normally 1000-2000 are recommended
(Efron and Tibshirani, 1993). Our goal was to ensure
that the computed bootstrap values would be reproduc-
ible upon independent experiment repetitions. There-
fore, we chose one of the artificially created datasets
and computed 10 times independently the bootstrap
values, using B replicates each time. For each possible
pair of these 10 different experiments, we compared all
corresponding bootstrap values and computed their
maximal absolute difference.

Figure 2 shows a box plot of these differences for
different resampling rates B. We chose B = 1000 re-
samplings for further experiments. This choice repre-
sents a compromise between our goals to guarantee
reproducibility and to limit computation time.

Correlation of Bootstrap Values and Error Rate

To investigate the relation between the bootstrap
value and the consecutive occurrence of probes in the
true physical map, we evaluated the simulated data-
sets. We computed the corresponding bootstrap graphs
with a resampling rate of B = 1000. Their edges were
partitioned into 11 bins according to their bootstrap
value. An edge e = (p, q) was classified as “true” if p
and g occurred consecutively in the “true” physical map
and “false” otherwise (Table 1).

When averaged over 50 independent simulations,
the vast majority of the false edges (19,351.98 or 96% of
the false edges) are in the bin with bootstrap value 0.
In the other bins, the number of false edges decreases
monotonically as the bootstrap value increases. On the
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FIG. 2. Box plot of the maximal absolute bootstrap differences
for different resampling rates. The lower and upper lines of the
“boxes” are the 25th and 75th percentiles of the sample. The line in
the middle is the sample median. The “whiskers” show the extent of
the sample unless there are outliers (marked by +).

other hand, most of the true edges are in the high-
scoring bootstrap bins (162.88 or 81% of the true edges
have bootstrap values larger than 0.5), while only 0.06
(0.03%) true edges are in the bin with bootstrap value
0. This shows that the edges with bootstrap values
strictly greater than 0 are suitable candidates for the
true solution of the physical mapping problem.

If one defines the error rate within a bootstrap value
bin as

|{false edges in bootstrap value bin}|
|{bootstrap value bin}| :

error rate :=

then there is a strong negative correlation between
error rate and bootstrap value (Fig. 3). Only minor
deviations can be seen at the left and right margins.
This is the motivation for us to use bootstrap values as
a measure of “quality” for the physical map. For com-
parison: there was a mean error rate of 0.1694 (stan-

TABLE 1

Average Number of True and False Edges
in the Bootstrap Bins

Bootstrap bin True False

b=0 0.06 19,351.98
00<b=01 5.02 429.72
01<b=02 6.24 40.92
02<b=03 7.00 22.70
03<b=04 7.32 14.34
04<b=05 12.48 13.50
05<b=06 11.38 9.40
06<b=07 12.24 5.68
0.7<b=038 16.80 4.86
08<b=09 24.72 3.94
09<b=10 97.74 1.96
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FIG. 3. Mean and standard deviation of the error rate in the
different bootstrap value bins. The bin consisting of edges with
bootstrap value 0 is omitted.

dard deviation 0.0324) in the edge set E() correspond-
ing to the result of our basic algorithm for map
construction.

Confidence Neighborhood

To investigate the relation among the confidence
level vy, the size of the confidence neighborhood N(y),
and the number of true edges contained in N(y), we
further evaluated the simulated datasets. Figure 4 is a
plot of the number of true edges contained in N(y)
versus the size of N(y). Intuitively, this indicates the
price, measured in false edges, one has to pay for the
delineation of an increasing number of true edges.
When inspecting only a small neighborhood (y small)
one identifies a restricted number of mostly true edges.
Upon increasing vy the size of the confidence neighbor-
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FIG. 4. Average number of true edges in the confidence neigh-
borhood N(vy) plotted against the size of N(y). The data points are
labeled by their confidence level vy.
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FIG. 5. Number of edges in N(vy) of the dataset of the bacterial
genome of X. fastidiosa.

hood increases, slowly finding all true edges although
gradually including more and more false edges. The
curve shows a steep ascent until a y of around 0.95. At
that point N(y) contains about 360 edges including
98.5% of the 201 true edges. Remarkably, the size of
N(vy) increases by leaps and bounds between the confi-
dence levels y = 0.95 and y = 1.0. Here the gain of 1.4%
(corresponding to 2.8 edges) of the edges of the true
solution that are missing in the original solution has to
be paid for by 388.5 additional edges in the confidence
neighborhood. It seems unlikely that, in practice, these
edges could be found, and therefore, we recommend
using the confidence neighborhood only for a confi-
dence level v = 0.95.

Application to X. fastidiosa Data

We applied our algorithm to a dataset from the bac-
terial genome of X. fastidiosa (1053 clones, 270 probes),
which was produced by Frohme et al. (unpublished).
We used a resampling rate of B = 1000. In Fig. 5, we
plot the size of N(y) against the confidence level y. The
shape of this curve is similar to our simulations, except
that the size of N is on average 1.4 times larger. Figure
6 shows GB restricted to the edge set N(0.95). The
probes are arranged in a circle corresponding to the
original solution. The bootstrap values of the edges are
translated into the edge width. Edges with a bootstrap
value less than 0.1 are hidden. The remaining chords of
the circle correspond to potential candidates for serious
errors in the map, which can influence the “global
structure” of the probe order. We also show an enlarge-
ment (Fig. 7) of Fig. 6 at a “weak” point in the original
solution. The edge e = (53, 75) has a small bootstrap
value b(e) of 0.185, and probe 53 shows connections to
remote probes. To increase the confidence in this
part of the solution, one would recommend further
experiments.
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DISCUSSION

Most physical mapping algorithms compute a single
probe order as the solution of the physical mapping
problem. In contrast, we focus on the determination of
parts of the solution that are well defined by the data,
as opposed to regions that are ambiguous. This allows
us to focus further attention on ill-defined regions and
to perform there additional experiments. Our approach
is based on the bootstrap method, which has become

x: ~ Physical map of Xylella fastidiosa |
Eile Edit GCraph layout Window Options Halp done

FIG. 6. A visualization of GB restricted to the edge set N(0.95) of
a dataset of the bacterial genome of X. fastidiosa. The nodes of GB
are arranged corresponding to 7. The edge width corresponds to the
bootstrap value (for orientation a few edges are annotated with their
bootstrap values), edges with bootstrap value less than 0.1 are not
shown.

FIG. 7. Enlargement of Fig. 6. The edges that belong to E(m)
are colored green, edges that connect nodes with rank difference
in 7 smaller than 10 are colored blue, the remaining edges are
colored red.
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one of the major tools for producing empirical confi-
dence intervals of estimated parameters. We use this
tool to measure the reliability of putative probe config-
urations in a physical map. Bootstrapping was also
used by Wang et al. (1994), although with the role of
clones and probes interchanged. Our method has the
advantage that, due to the higher redundancy of the
clones, the order of the probes is much more clearly
defined by their hybridization pattern. Furthermore,
we can rely on many more independent data points
leading to more reliable estimations.

In general, bootstrap values do not necessarily cor-
relate with accuracy—see Hillis and Bull (1993) for an
empirical study of this question in the context of phy-
logeny. In physical mapping, there are three main rea-
sons that could cause a decrease in the bootstrap value
of a true edge: First there could be ambiguity caused by
nonuniqueness of the solution. This ambiguity is
present even under idealized, error-free conditions and
could be encoded in the PQ-tree structure of the solu-
tion. Alternative reasons for a low bootstrap value
could be low clone coverage or noisy data.

In our experimental setting, a simulation study (see
Correlation of Bootstrap Values and Error Rate) sug-
gests that the bootstrap values are good estimators of
the probability that two probes occur consecutively in
the true probe order. This good correspondence may be
in part due to the high clone coverage we assume.

Based on bootstrap values, we construct a neighbor-
hood N of alternative edges to the original solution.
Our definition of N mimicks a confidence interval
based on the percentile method described by Efron and
Tibshirani (1993). This has the advantage that only a
small number of highly likely alternative configura-
tions is reported. In the parts of the original solution in
which the probe order is well supported by the data,
the neighborhood N contains no additional edges, while
in ill-defined regions it contains “reasonable” alterna-
tives that occurred in a high percentage of the boot-
strap replicates. This highlights the regions of low quality
and simultaneously offers the possibility of performing
additional experiments, reducing the ambiguity.

The edges of N not part of the original solution can be
partitioned into a set of edges that connect probes with
small rank distance in the original solution and a set of
edges with large rank distance (by a given threshold).
While the first set corresponds to local ambiguity in the
map, which is in practice of only minor interest, the
latter edges may be signals of serious errors (see also
Mayraz and Shamir, 1999, for a similar definition).
This leads to a further decrease in the size of the
candidate set for reasonable probe orders.

Although our method performs well in our simula-
tion study as well as for the X. fastidiosa genome, it
remains to be seen how well it generalizes for other
physical mapping techniques and more problematic
targets. In the complex work flow of physical mapping
procedures there are many possible sources for corre-
lated errors like contaminations, mix-up of clones, sys-
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tematic measurement errors, chimeric clones, and com-
plex repeats in eukaryotic DNA (Greenberg and Istrail,
1995; Hanke et al., 1998). All these errors influence the
performance of physical mapping algorithms, but in
their entirety they are hard to model by an objective
function or to test by simulations. This is the reason
physical mapping algorithms typically include data
preprocessing steps to handle such systematic errors.
It was our goal to present here a simple and practical
tool that can easily be combined with any of these
methods and that we hope complements their perfor-
mance by drawing attention to the remaining ambigu-
ity in the physical map.

In the future, we intend to generate alternative (lo-
cal) probe orders that use the edges in the confidence
neighborhood as a candidate set. Such orders could be
used for evaluation by more complicated objective func-
tions similar to the bootstrap “bumping” strategy (Tib-
shirani and Knight, 1997), for detection and elimina-
tion of inconsistent hybridization signals, and for
automatic selection of additional probes from ill-de-
fined regions or contig ends. We also plan to adapt our
method to STS-content data.
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