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ABSTRACT

Motivation: Cross-species meta-analyses of microarray data usually
require prior affiliation of genes based on orthology information that
often relies on sequence similarity.

Results: We present an algorithm merging microarray datasets
on the basis of co-expression alone, without any requirement
for orthology information to affiliate genes. Combining existing
methods such as co-inertia analysis, back-transformation, Hungarian
matching and majority voting in an iterative non-greedy hill-climbing
approach, it affiliates arrays and genes at the same time, maximizing
the co-structure between the datasets. To introduce the method,
we demonstrate its performance on two closely and two distantly
related datasets of different experimental context and produced on
different platforms. Each pair stems from two different species. The
resulting cross-species dynamic Bayesian gene networks improve
on the networks inferred from each dataset alone by yielding more
significant network motifs, as well as more of the interactions already
recorded in KEGG and other databases. Also, it is shown that our
algorithm converges on the optimal number of nodes for network
inference. Being readily extendable to more than two datasets, it
provides the opportunity to infer extensive gene regulatory networks.
Availability and Implementation: Source code (MATLAB and
R) freely available for download at http://www.mchips.org/
supplements/moghaddasi_source.tgz

Contact: kurt@tum.de

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

Microarray technique, albeit barely older than a decade, is now
both mature and ubiquitous, accumulating an unprecedented amount
of quantitative genome wide information (Quackenbush, 2006).
Although each study is conducted to generate valuable insights
in and of itself, it becomes more and more desirable to put them
into a larger context. Various meta-analysis techniques combine
individual studies conducted by different authors. Choi et al. (2003)
and Rhodes et al. (2002) were among the first authors to introduce
meta-analysis for microarray data. Most meta-analysis studies have

*To whom correspondence should be addressed.

been performed on cancer (Ma and Huang, 2009; Marot et al.,
2009). In this field of research, biomaterial is often limited, in
other cases the price for the microarrays is the bottleneck. In typical
microarray-based studies, tens of thousands of genes (variables) are
only investigated across (at most) hundreds of biological samples
(observations). The asymmetry of the data tables poses a problem for
inferring gene regulatory networks (GRN) by reverse engineering
(Ramasamy et al., 2008). Alleviating the asymmetry by combining
the datasets therefore largely increases their use for systems biology.

A multitude of algorithms have been reported for network
inference from gene expression data. Dynamic Bayesian networks
(DBN) capture conditional independence between variables. They
are relatively easy to interpret (Friedman et al., 2000) yielding
directed graphs. They can handle noisy data and even feedback loops
in biological systems (Smith et al., 2002). In order to maximize the
number of samples accounted for in one GRN reverse engineering
step, it seems preferable for any method to first combine the
data instead of combining the resulting networks later on. Several
methods can be applied to this end (Conlon et al., 2007; Garrett-
Mayer et al., 2008; Gilks et al., 2005; Rhodes e al., 2004; Stevens
and Doerge, 2005; Wang et al., 2004; Yang and Sun, 2007).
However, all of these methods take as input the affiliation of genes
between the datasets.

When combining data stemming from different species, sequence
homology can be used to affiliate orthologs. However, due to
the ambiguity of orthology relations, mapping across species is
challenging. Lineage-specific gene duplications can give rise to a
different number of paralogs in one species compared to another
species. One cannot tell which paralog (or in-paralog) retains the
function of the ancestral gene or has been co-opted into a new
function.

We present a way of combining datasets that does not need
any genes (or samples) to be affiliated beforehand. While such
information can be easily incorporated to assist the process, our
algorithm also performs well without being provided with any
affiliations, purely driven by coherences among the data. That
opens the door to fully automated combining and modeling of all
microarray datasets accumulated to date.

2 METHODS

2.1 Datasets and pre-processing

To introduce the method, we show its application to two yeast cell
cycle studies (Rustici et al., 2004; Spellman et al., 1998) comprising
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nearly identical experimental conditions but on two different species
(Saccharomyces cerevisiae, Schizosaccharomyces pombe). Furthermore, we
applied our algorithm to estrogen-regulated gene expression studies of
Homo sapiens and Mus musculus (Supplementary data S5), thus supporting
its general applicability to different levels of similarity, underlying structure
and experimental platform (both two-channel cDNA and Affymetrix chips).
As a means to verify each and every gene affiliation, we also used
a pair of datasets stemming from the same species (Supplementary
data S8). Each dataset was pre-processed separately (Supplementary
data S1).

2.2 Co-inertia analysis

Co-inertia analysis (CIA) is a multivariate approach that can identify co-
relationships within multiple datasets by finding successive principal axes
of maximum co-variance. It was first introduced applying ecological data
(Dolédec and Chessel, 1994) using co-inertia as a measure of co-structure
between two data matrices. When the matrices are centered, co-inertia
is a sum of square covariances. A formal definition is provided in the
Supplementary data (S2.1).

Culhane and co-workers demonstrated the efficiency of CIA on cross-
platform comparisons of gene expression data (Culhane et al., 2003). CIA
is often used in combination with principal component analysis (PCA) or
correspondence analysis (CA), the latter being capable of visualizing genes
and hybridizations at the same time (Fellenberg et al., 2001). While, as with
PCA, similarity among genes as well as similarity among hybridizations
is depicted as proximity, a gene that is particularly up-regulated under a
certain condition will be located in the direction of this condition. The
farther away from the centroid in this direction (towards the outer margin
of the plot) it is displayed, the stronger the association (Culhane et al.,
2003; Fellenberg et al., 2001). If used together with CIA, genes and
hybridizations are shown simultaneously for both datasets, projecting their
common variance or co-inertia (Supplementary Fig. S2). Here, proximity
among objects and directions can be interpreted as aforementioned, now
highlighting common trends and patterns. Overall similarity of the datasets
is captured by the RV-coefficient (RV) that is a commonly used matrix
correlation (Robert and Escoufier, 1976). In CIA, the RV is calculated
as the co-inertia (sum of eigenvalues of a co-inertia analysis) divided
by the square root of the product of the square inertias (sum of the
eigenvalues) from the individual CA (Culhane et al., 2003). Much like a
correlation coefficient, the stronger the joint trends between two datasets
agree, the closer to 1 the RV score becomes. A zero RV score indicates no
similarity.

Prerequisite for CIA is that either the genes or the hybridizations are
affiliated between the two datasets. Therefore, either the columns or the rows
of the tables must match (and have equal weights). In the following text, we
will refer to the variables (genes or hybridizations) needed to be affiliated
beforehand as ‘connecting variables’ and to the distances between objects
in a CIA output (projection) as ‘projected distances’. We used Hungarian
algorithm to affiliate connecting variables in CIA.

2.3 Matching by Hungarian algorithm

Two sets of objects (here genes or hybridizations of the two datasets to be
combined) can be matched by the Hungarian algorithm, also called Kuhn—
Munkres algorithm (Kuhn, 1955). It takes as input a penalty weight matrix
of all possible pairwise projected distances and computes the pairs summing
up to minimal penalty (Supplementary data S3 and Fig. S1). The original
publication refers to a quadratic penalty matrix. However, the Hungarian
algorithm can also be applied to sets of different cardinalities by adding
virtual objects of highest penalty to the smaller set until its cardinality
matches the larger one (Bourgeois and Lassalle, 1971). Here, virtual genes
(or samples) have been added to the penalty matrix showing the maximum
of all occurring pairwise projected distances to all other genes (samples).

2.4 k-means clustering

Data can be subdivided into pre-defined numbers of homogenous gene or
sample (array) clusters by the k-means algorithm. Here, we performed it on
the xz—distance, the same distance measure that governs CIA.

2.5 Back-transformation

CIA projection reduces the dimensionality of the original data tables
to a few principal axes of maximum co-variance. While an, e.g. two-
dimensional projection is ideal for visual inspection, the corresponding data
table of only two rows (or columns) would be too small for any reverse
engineering GRN method. We therefore back-transform the CIA results,
yielding tables of the original format whose content is solely based on the
selected eigenvectors (Dray and Dufour, 2007). We now briefly describe the
underlying mathematical basis of the back-transformation method following
the notation of (Dray and Dufour, 2007). Given a data table X with n rows,
p columns and nf kept axes, the approximated data table can be obtained
from the following equations:

KApy'?A" = KK'DX (1

And with the left multiplication of K'D we will have:
K'DK A(y'/?A' =K' DX )
KAy A =X ©)

where D is a vector of row weights with length n. A is a diagonal matrix
of eigenvalues with length r.r is called the rank of the diagram where the
non-zero eigenvalues A| > Ay > --- > A, > 0 are stored in the diagonal matrix
A Kis a data matrix of n rows and nf columns and A is a matrix with the
principal axes of p rows and nf columns. The details for reconstitution of
these data are described by (Dray and Dufour, 2007). The derivation of the
duality diagram concept is also described by (Dolédec and Chessel, 1994;
Dray et al., 2003).

2.6 Dynamic Bayesian networks

A Bayesian Network (BN), also called a ‘probabilistic graphical model’,
is a graphical representation of a model that explains the probabilistic
relationship between variables. Each observed variable corresponds to a
graph node. Directed edges represent conditional dependencies between
nodes. BNs have become a popular method for modeling gene regulatory
networks, since they are able to represent complex stochastic processes and
allow combinatorial and non-linear relationships among variables of complex
biological systems (Friedman et al., 2000; Hartemink et al., 2002a). DBNs
are an extension of BN, able to infer interactions from time-series datasets
rather than steady-state data. They can also handle noisy data to capture the
architecture of regulatory networks from microarray data (Smith et al., 2002;
Yu et al., 2004).

DBN inference was carried out utilizing Banjo (Bayesian Network
Inference with Java Objects). It focuses on score-based structure inference.
For each network structure explored, the parameters of the conditional
probability density distribution are inferred and an overall network’s score
is computed using the Bayesian Dirichlet scoring metric (BDe). In Banjo,
heuristic approaches, such as greedy with random restart or simulated
annealing, are used to search for the highest scoring graph among a set of
networks. The output network will be either the top graph (highest score) or
consensus network. The consensus network is computed based on the N top-
scoring networks by assigning exponentially weighted probabilities to the
individual edges in each of the high-scoring networks, based on the ranking
of each network in the set. The probability of edges being present in the
consensus network is computed using the weighted average approximation
among N highest scoring models. The background for the concept of the
consensus graphs is described by (Hartemink et al., 2002b).

Banjo was run on all the data sets using default parameters (supplementary
data S7). To identify robust interactions among a set of top-scoring networks,
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we used consensus networks. The output was rendered with dot, a graph
layout visualization tool by AT&T (http://www.graphviz.org/). Since it is
possible to run java from within MATLAB, we ran BANJO release 2.0 in
MATLAB. We compared the DBN algorithm performance when each model
dataset discretized into three, four and five bins. We obtained regulatory
networks close to a ‘true’ network compiled from KEGG and other databases
when three categories are selected.

2.7 Evaluation

We assessed sensitivity, specificity and accuracy of our approach by
comparing the resulting gene networks to a gold-standard of known
interactions. A true positive (TP) was counted as interaction that is present
both in an observed and an expected network, a false positive (FP) for any
edge that was predicted in the learnt network but does not exist in the
expected network, a false negative (FN) as an edge that is present in the
expected network but not in the learnt network, and a true negative (TN)
when an interaction does not exist in either learnt or expected networks.
To construct an expected network, we merged all pathways involved in our
gene lists into a new graph containing all nodes and edges. Therefore, the
expected network represents comprehensive regulatory paths and physical
interactions, accounting for the fact that many KEGG (Kanehisa e al., 2008)
pathways embed other pathways. We used Ingenuity Pathway Analysis (IPA;
http://www.ingenuity.com) to account for experimental findings reported in
a variety of data resources, such as BioGRID, IntAct, MINT, KEGG and
others as detailed in Supplementary data Table S3. In the expected network,
all edges are supported by at least one published reference or from canonical
information stored in the protein interaction databases.

2.8 Significance analysis of network motifs

To uncover the structural design principles of the reversely engineered GRN,
we assessed the comprised network motifs. Network motifs are patterns
occurring significantly more frequently than at random (Milo et al., 2002) in
complex biological networks. A large number of comprised motifs indicate
authenticity and robustness. Motif detection was carried out using a so-called
rand-esu algorithm (Wernicke, 2006), generating the random networks from
the reversely engineered consensus network by a series of edge switching
operations as the default randomization model. We searched 10 million
random networks to obtain a comparison to the consensus network. The
higher the number of randomized networks, the more accurate the results.
Significance analysis of the motifs was carried out by comparing the
occurrence of a motif in the consensus network to the occurrence of the same
motif in the randomized network. Z-scores were calculated as the occurrence
of a motif in the consensus network minus its random frequency divided by
the standard deviation in random networks. The higher the Z-score, the more
significant a motif. P-values correspond to the number of random networks
in which the motif occurred more often than in the original network, divided
by the total number of random networks.

3 ALGORITHM AND RESULTS
3.1 Algorithm

We combined the above described existing methods in an iterative
procedure to estimate the common regulatory network from different
species. An overview is given in Figure 1. Starting on a pair
of preprocessed datasets A and B of no particular numbers of
genes and also differing in the numbers of samples (arrays), we
iteratively apply methods described in the ‘Methods’ section (CIA,
Hungarian matching and k-means clustering) in the following
manner (Algorithm 1).

Cluster affi iliatigy, 5

Majority Transpose
voting matrix

2X
(genes & samples)

obled afﬁlliatia,.-,s

Initialization

Hungarian CIA _

Distances

2
=]
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Refinement

| Reverse
| Engineering GRN

| Back-transform

Fig. 1. Overview.

Algorithm 1 Pseudocode.

Input: Preprocessed tables A and B of microarray data, differing in numbers of
genes (rows) and samples (columns)
Initialization:
Cluster each table (A and B) into same small no. of gene clusters n (e.g. 3)
Represent each cluster by its centroid
Affiliate each cluster centroid of A to a cluster centroid of B yielding a pairing
for cach possible pairing do
Use these gene cluster pairs as connecting variables for a CIA of samples
to identify the pairing with highest co-inertia
end for
Iteration:
while number of clusters <= no. of samples do
while RV increases or remains constant do
Call doMatching ( samples, connecting variables )
Call doMatching ( genes, connecting variables )

end while
increase number of clusters n by |
end while
doMatching: Compute weight matrix (objects X objects) containing
penalties for high distances
Use Hungarian algorithm to compute optimal matching
between objects
Cluster each data set into n clusters
Affiliate cluster centroids by majority voting of object
matches
Use these pairs as connecting variables for the next CIA
Return : RV, connecting variables
Refinement: Decider: define the number of clusters to be matched based

on silhouette values

Rearrangement: Recall doMatching for m gene clusters
out of decider module, obtaining m paired gene cluster
centroids

= back-transformation < reverse engineering GRN
= verification of common model

1084

TTOZ ‘ST 4870120 U0 Z4)Q 1e B10°S[euInolpiojxo°sanewouiolq Wwoly papeojumoq


http://www.graphviz.org/
http://www.ingenuity.com
http://bioinformatics.oxfordjournals.org/

Cross-species meta-analyses without prior gene-affiliation

3.1.1 Initialization ~ As an initial step, A and B are (separately)
divided into n gene clusters, each. For the results presented, we
initialized with n=3.

Each cluster is represented by its centroid (weighted average) as
if it were only one gene representing a typical transcription profile
for this cluster. Each cluster centroid of A is paired with one cluster
centroid of B. There are n! possible ways to combine A and B, each of
which is subjected to CIA to determine the one of highest co-inertia.
This affiliation, albeit of low granularity (only three connections),
is used as a starting point for iteration.

3.1.2 Iteration The remaining procedure consists of two
consecutive parts that are iterated with increasing » (until n reaches
the number of samples). Both parts are identical in that they take as
input an existing CIA, using its projected distances as weight matrix
for Hungarian matching and let the resulting matches vote for cluster
affiliations that are in turn basis for the next CIA. However, the two
parts differ in that the first part starts on an affiliation of sample
clusters in order to improve affiliation of gene clusters and vice
versa. This is implemented by calling ‘doMatching’ subroutine.

The first part uses the previously performed CIA, collecting
the projected distances between the samples of A and B into a
sample(A) x sample(B) matrix which is then subjected to the
Hungarian algorithm as a penalty matrix. The resulting matching
preferentially pairs samples of low distance (resembling co-
ordination). Subsequently, samples of A and B are separately
clustered into n sample clusters. Each sample cluster is represented
by its cluster centroid (typical sample) and each cluster centroid
of A is paired to a cluster centroid of B. The pairs are determined
by majority voting of above matches, i.e. any two clusters with
the highest number of connections between the comprised samples
(arrays) become paired. The paired sample cluster centroids serve
as connecting variables for a CIA projecting the genes.

The second part uses these projected distances between the genes
of A and B, collecting them into a gene(A) x gene(B) matrix which
is then subjected to the Hungarian algorithm as penalty matrix. All
operations of the second part resemble those in the first part, but
the role of genes and samples are switched. In practice, the second
part can be performed after transposing both A and B. Please note
that the two parts are consecutively iterated until the co-inertia
stops increasing (inner loop) before increasing n. The algorithm
terminates as n approaches the number of samples (arrays) of the
smaller data set.

3.1.3 Refinement The motivation for this step is to allow a larger
n (exceeding the number of samples) for the genes. ‘Refinement’
consists of two modules, ‘Decider’ and ‘Rearrangement’. The
‘Decider’ determines whether the number of clusters proposed
by the iteration part is accepted as the optimum or if there is
room for improvement by further increasing n for the genes. The
choice of the decider is tightly connected to the Silhouette values
(Rousseeuw, 1987) of gene clusters. If a larger n (maybe even larger
than the number of samples) improves clustering, ‘Decider’ will
proceed to determine the optimum number of clusters. Subsequently,
‘Rearrangement’ generates m pairs of gene cluster centroids by
calling the ‘doMatching’ subroutine.

3.1.4 Reverse Engineering gene regulatory networks For the
resulting gene cluster centroids, the CIA coordinates are

back-transformed into a data table. Its format and scale resemble
that of a conventional microarray data table but it comprises only
the variance that is common to both input data tables (of gene
cluster centroids). It is subjected to DBN inference resulting in a
graph each node of which represents a (cross-species) pair of gene
clusters, while its edges stand for inter-dependencies detected for
both species.

Back-transformation, DBN, as well as motif analysis are not used
as parts of the algorithm. Apart from that revealing the underlying
common gene regulatory network can be rewarding in and of itself,
the resulting networks serve as a means to validate our algorithm.

3.2 Cell cycle data—cerevisiae versus pombe

To introduce the method, we show its performance on two closely
related datasets, one of which is tailored to resemble the other for
another species. Spellman and coworkers recorded mRNA levels for
6178 open reading frames (ORFs) of Saccharomyces cerevisiae over
two cell cycle periods in a yeast culture synchronized initially in the
cell cycle stage M/G1 at 7 minute intervals for 119 min. Rustici and
coworkers monitored mRNAs whose levels oscillate during the cell
cycle for 6978 ORFs of Schizosaccharomyces pombe as a function
of time in cells synchronized through centrifugal elutriation for
285 min and temperature-sensitive cell cycle mutants for 270 min
at 15min intervals. Both datasets were recorded on glass-slides
using two-channel fluorescent labeling. Generally, synchronization
substantially decreases after two periods. In order to maximize
similarity, we selected 10 time points of highest synchronization
and quality from either dataset. We will refer to these data as ‘Sce’
and ‘Spo’, respectively.

The algorithm succeeded in producing the correct matching
of time points after 20 iterations. Challenging the ability of our
algorithm to reconstruct the correct order of time points without
any knowledge about affiliation of neither time points nor gene
orthologs, we randomly permuted the sequence of both the time
points and genes. Typically, after 16-35 iterations the algorithm
converged to the very same result (data not shown).

In the shown example, the algorithm terminated with an RV
coefficient of 0.8983. While the algorithm’s outer loops improved
the matching score with increasing granularity, the inner loops
optimized overall co-structure for a given n (Supplementary Fig. S4).
The algorithm gradually increased the matching score in minimum
two consecutive inner loops and identified the best similarity score
by finding the correct affiliations of the connecting variables in seven
outer loops. The result was verified in terms of optimal co-inertia
and granularity as detailed in section S6 of supplementary data. The
result was visualized by CIA (Supplementary Fig. S2).

Here, the two pairs of projection coordinates are highly correlated
and the overall similarity in the structure of the dataset was very high
resulting in a RV coefficient of 0.8983. Clearly, the algorithm was
able to detect and highlight the similarity between histones in these
datasets, projecting them all in a cluster of histones differentiated
from other functionally related genes (Supplementary Fig. S2a,
encircled in black).

Table 1 shows that also the other affiliated clusters comprise
common functionalities and orthologs. We performed GO term
enrichment analysis (Huang da et al., 2009) and listed significant
common terms along with the percentage of the involved genes in
each cluster. Top common functions are represented by significant
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Table 1. Characterization of the affiliated gene clusters

Node? Genes Orth. Counts? Top common over-represented biological functions
‘Spo’ “‘Sce’ ‘Spo’ “‘Sce’ Category Spo’ Sce Spo % Sce % Spo pvalue Sce pvalue
gl (7) 64 63 88% 91% GO:0006996_organelle organization and biogenesis 23 22 35.94% 34.92% 2.171E-02 1.591E-02
G0:0043228_non-membrane-bound organelle 17 21 26.56% 33.33% 6.318E-03 5.305E-03
GO0:0043232_intracellular non-membrane-bound organelle 17 21 26.56% 33.33% 6.318E-03 5.305E-03
GO0:0051276_chromosome organization and biogenesis 15 15 23.44% 23.81% 4.290E-04 8.990E-05
GO:0007049_cell cycle 12 16 18.75% 25.40% 8.986E-03 8.986E-03
GO0:0022402_cell cycle process 11 14 17.19% 22.22% 3.872E-02 1.661E-02
GO0:0051321_meiotic cell cycle 8 15 12.50% 23.81% 2.463E-03 8.990E-05
G0:0022403_cell cycle phase 10 12 15.63% 19.05% 3.487E-02 1.573E-02
GO0:0044427_chromosomal part 8 14 12.50% 22.22% 1.230E-02 4.290E-04
DNA binding 15 16 23.44% 25.40% 1.817E-03 3.598E-02
GO:0000279_M phase 9 12 14.06% 19.05% 1.425E-02 8.800E-03
GO:0006323_DNA packaging 8 11 12.50% 17.46% 2.080E-02 4.230E-04
22 (9. M/G1) 54 43 85% 97% GO0:0016043_cellular component organization 23 23 42.59% 53.49% 5.243E-03 2.720E-03
GO0:0043283_biopolymer metabolic process 22 23 40.74% 53.49% 9.538E-03 7.773E-03
G0:0032553_ribonucleotide binding 10 14 18.52% 32.56% 6.023E-03 9.034E-03
GO:0007049_cell cycle 11 5 20.37% 11.63% 7.773E-03 5.459E-03
DNA binding 5 10 9.26% 23.26% 3.772E-02 3.772E-02
G0:0000278_mitotic cell cycle 7 6 12.96% 13.95% 3.694E-02 3.694E-02
GO:0000087_M phase of mitotic cell cycle 6 8 11.11% 18.60% 5.459E-03 4.214E-02
23 (8) 60 84 68% 84% GO:0005515_protein binding 39 19 65.00% 22.62% 2.472E-02 1.927E-03
GO0:0065007_biological regulation 20 24 33.33% 28.57% 8.096E-03 1.846E-03
GO0:0000082_G1/S transition of mitotic cell cycle 9 7 15.00% 8.33% 3.370E-02 5.871E-03
G0:0032502_developmental process 8 13 13.33% 15.48% 3.987E-02 1.264E-02
GO0:0007049_cell cycle 15 5 25.00% 5.95% 6.160E-03 3.343E-02
GO0:0051301_cell division 10 10 16.67% 11.90% 8.302E-03 1.056E-02
G0:0030427_site of polarized growth 11 7 18.33% 8.33% 4.623E-05 4.252E-05
G0:0000074_regulation of progression through cell cycle 7 8 11.67% 9.52% 4.317E-02 1.969E-02
GO0:0005856_cytoskeleton 7 8 11.67% 9.52% 1.969E-02 7.652E-03
GO0:0005933_cellular bud 10 5 16.67% 5.95% 5.739E-03 2.264E-04
GO:0048519_negative regulation of biological process 9 6 15.00% 7.14% 5.739E-03 3.370E-02
GO0:0051726_regulation of cell cycle 7 8 11.67% 9.52% 4.317E-02 1.969E-02
24 (10) 36 54 94% 90% G0:0050789_regulation of biological process 14 9 38.89% 16.67% 8.656E-03 7.954E-03
GO:0050794_regulation of cellular process 14 9 38.89% 16.67% 7.434E-04 7.123E-03
GO:0065007_biological regulation 16 5 44.44% 9.26% 1.895E-03 1.895E-03
GO0:0022402_cell cycle process 9 7 25.00% 12.96% 9.051E-04 7.317E-03
G0:0000278_mitotic cell cycle 8 6 22.22% 11.11% 1.852E-02 1.625E-02
GO0:0007088_regulation of S phase 2 3 5.56% 5.56% 7.269E-04 2.535E-02
25 (6, M) 49 32 91% 86% GO0:0051301_cell division 6 9 12.24% 28.13% 3.110E-02 1.533E-02
GO:0000278_mitotic cell cycle 5 7 10.20% 21.88% 9.787E-04 4.132E-02
GO:0000279_M phase 8 3 16.33% 9.38% 3.110E-02 7.395E-03
GO0:0044430_cytoskeletal part 4 7 8.16% 21.88% 9.895E-03 8.687E-03
cell cycle control 3 6 6.12% 18.75% 1.274E-02 4.888E-03
g6 (5) 31 41 64% 88% transmembrane protein 14 10 45.16% 24.39% 5.725E-03 2.625E-02
GO:0051301_cell division 6 6 19.35% 14.63% 9.339E-03 4.124E-02
G0:0007010_cytoskeleton organization 5 5 16.13% 12.20% 6.161E-04 3.497E-02
g7 (11) 13 10 89% 95% G0:0000278_mitotic cell cycle 5 5 38.46% 50.00% 7.088E-03 1.828E-03
cell cycle 4 4 30.77% 40.00% 1.569E-02 4.554E-03
GO0:0051301_cell division 4 4 30.77% 40.00% 3.522E-02 2.428E-02
g8 (1,9) 10 10 100% 100% Histones
29 (2) 13 21 15% 83% GO:0016043_cellular component organization 9 13 69.23% 61.90% 8.489E-04 6.756E-03
cell cycle 5 6 38.46% 28.57% 1.027E-02 2.980E-03
210 (12, G1) 22 27 90% 89% GO0:0005515_protein binding 17 8 77.27% 29.63% 3.957E-02 5.390E-03
GO:0006996_cell cycle 6 9 27.27% 33.33% 8.582E-03 6.943E-03
DNA damage 3 5 13.64% 18.52% 4.905E-02 3.401E-02
GO0:0006261_DNA-dependent DNA replication 3 4 13.64% 14.81% 5.390E-03 1.687E-02
gll (3,G2) 17 13 81% 94% cell cycle 3 3 17.65% 23.08% 6.271E-04 2.609E-02
GO:0007047_cell wall organization and biogenesis 3 3 17.65% 23.08% 6.892E-03 2.588E-02
gl2(4) 24 46 87% 100% GO:0016043_cellular component organization 12 26 50.00% 56.52% 7.028E-05 2.741E-02
GO:0065007_biological regulation 8 19 33.33% 41.30% 9.026E-04 4.175E-03
phosphoprotein 3 17 12.50% 36.96% 9.403E-03 5.889E-03
G0:0032502_developmental process 4 10 16.67% 21.74% 8.368E-02 1.386E-02

4The sequence of the nodes in the cell cycle is provided in brackets along with their cell-cycle affiliations.
bThis column shows the number of correctly affiliated orthologues as a percentage of all orthologues “available” for this gene cluster.
“Number of genes known to be involved in the same functional category (GO-term) in each individual gene cluster.
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Fig. 2. Common ‘Sce’ and ‘Spo’ regulatory network. Affiliated gene clusters
are represented as nodes, their interactions as edges. These interactions are
color-coded according to their occurrence in KEGG or one of the other
pathway databases listed in the ‘Methods’ section. True positive (TP) edges
are shown in green, missing edges (FN) are shown in black, incorrect or
previously unknown interactions (FP) are shown in red. Any green or black
edge is supported by at least one publication.

associations of P-value <0.05. In the same manner, we summarized
the percentages of correctly affiliated orthologs. A complete table
listing all genes is given in the Supplementary Table S1. Based on the
two back-transformed data tables, we represented each cluster by the
gene-wise sum of all comprised genes across both tables. Subjecting
this combined table to DBN algorithm, these cluster representatives
became the nodes of a common gene network.

A graphical representation of the resulting common network is
shown in Figure 2. To illustrate it by example, we follow its edges
from the smallest to the largest cluster, moving through the cell
cycle from S phase towards mitosis (Table 1). The histones (cluster
g8) play an important role in transcriptional regulation. We observe
an edge from g8 to g9 comprising the cyclin CLN2 comparing
favorably with work of Santisteban and coworkers (Santisteban
et al., 1997).

Following the cell cycle from S to G2, the cohesin complex
is required to hold together the sister chromatids. This process
is mediated by the acetyltransferase ECOI of cluster g9
(S-phase) directly interacting with cohesion complex subunit SMC3
(G2-phase) of cluster g11 (Ben-Shahar et al., 2008; Rowland et al.,
2009; Unal et al., 2008). The edge linking g9 and gll1 suggests
an according tight transcriptional regulation of acetylase ECOI
preceding SMC3.

Following the cell cycle from G2 to M, the common transcription
network shows node g11 (G2) to regulate both g12 and g3, whereas
g12 itself also regulates g3, forming a network motif referred to as
feedforward loop (Alon, 2007). It is often found in the context of
signal amplification. The increase in cellular activity during G2/M
transition is also reflected by increased glycolysis (GLKI, PFKI)
and by g3 being the largest cluster. While still transcribing genes
important for G2/M transition (SWEI) and DNA repair (RADS3,
EXOI, MSH2, POL3), the cell already prepares for budding (BEM 1,

Fig. 3. Network inferred from the single ‘Sce’ dataset. The layout follows
Figure 2.

SPHI, FAAI, BNI5, GICI) and cytokinesis (HOF1, MYO3, STU2,
YPTI1I).

The observed edges can be explained by transcription factor
activity. For the direct edge from gl1 to g3, transcription factors
SIM1 and FKH1 of g11 have been shown to regulate 2 and 8 genes in
23, respectively (genes and literature are provided in Supplementary
Table S5). For the path from gl1 to g3 via gl2, 17 genes of gl2
are targets of the transcription factor SFPI. While SFP] itself was
filtered out for showing unreliably small signals, it is regulated by
KARS, RPCI11 and SMC3 of cluster gl1 (Supplementary Table S5).
From gl2, the comprised transcription factors RDS2 and MAL33
are known to regulate PDR16 and ALG14, OPY2 and RADS53 of g3,
respectively (Supplementary Table S5).

While the edge from g11 to g12 can also be obtained from the ‘Sce’
dataset alone (Fig. 3), the edge from g6 to g12 is not present in either
single network (Figs 3 and 4) but is only detected by combining the
datasets (Fig. 2). The same is true for the above described edge
between g9 and gll. The superiority of the common network is
quantified in Section 3.3.

Out of 144 possible directed interactions, 53 true positives, 5 false-
positives, 36 false-negatives and 50 true-negatives were detected.
Assuming that any interaction listed in any database for these
genes would be detectable from these small datasets, sensitivity
is 60%. Thus, most (more than half) interactions in pathway
databases are present in these data, common to both datasets, and
successfully detected here, with 72% accuracy and a specificity of
91%. Furthermore, we assessed the coherence of the interactions
found, i.e. their tendency to form sound regulatory modules, by
network motif analysis. Size-3 and size-4 subgraph frequencies
were determined by generating 10 million directed random graphs
with same sample probabilities and in which cases the probability
that a given edge exists was preserved. For this, we calculated all
13 non-isomorphic directed size-3 subgraphs as well as 199 non-
isomorphic directed size-4 sub graphs. All 21 network motifs listed
in Supplementary Table S2 exhibit P <0.05 as well as Z-scores
greater than two.
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Fig. 4. Network inferred from the single ‘Spo’ dataset.

Table 2. Comparison of each single dataset to the common network in Yeast

“Sce” “Spo” Common
network network network
True positive edges 17 21 53
False positive edges 22 25 5
False negative edges 31 26 36
True negative edges 74 72 50
Sensitivity (%) 35 44 60
Specificity (%) 71 74 91
Accuracy (%) 63 64 72
Number of network motifs 13 18 21

3.3 Superiority of the common network

In order to assess the advantage of combining datasets using our
algorithm, we compared the common network to the networks
obtained from each single dataset. The networks inferred from ‘Sce’
and ‘Spo’ datasets are shown in Figures 3 and 4, respectively. The
specificity and sensitivity of the networks compared to the common
network is summarized in Table 2. The common network improves
upon the single (‘Sce’ and ‘Spo’) networks in terms of absolute
numbers of true positive and false positive edges, as well as in
sensitivity, specificity, accuracy and the number of network motifs
(Table 2).

3.4 Application to further datasets

The first pair of datasets is ideal for verifying correct affiliation
of the time points (Supplementary Fig. S2). One set was made
to resemble the other where possible, extending the cell cycle
transcription studies to another species. In order to demonstrate the
performance of our algorithm in a real-world-scenario, we picked a
second pair of more distantly related datasets modeling the reactions
of mouse and human to estradiol (Supplementary data Section S5).
Although both datasets had been recorded on the generally more
crisp Affymetrix Gene Chip platform and although both comprise

more inertia (information) than for the yeast data (0.207 and 0.2716
as opposed to 0.115 and 0.1393), RV decreases to 0.8. However,
that still warrants considerable co-structure. The resulting common
model (Supplementary Fig. S3) appears as accurate (69%) compared
to the yeast common network (72%).

For the above examples, we were not provided with ortholog
information for all genes. A third pair of datasets provides more
direct evidence in that both datasets stem from the same species,
thus all gene affiliations are known. Both samples and genes
were permuted for one of the two S.pombe cell cycle experiments
described in the Supplementary data Section S8. Our algorithm was
able to reconstruct correct affiliations of all samples (Supplementary
Fig. S10) as well as for 87% of all genes (Supplementary Table S4).

4 DISCUSSION

Co-expression has been widely used to reveal, amongst others,
functional relationships (Adie er al., 2006; Lage et al., 2007) or
to identify common regulatory motifs (Brunner and van Driel,
2004; Franke et al., 2006). Much like conserved sequence motifs,
important regulatory patterns can be observed across species
borders. In order to account for different scales such datasets may
have, co-expression can be determined on the basis of intermediate
results such as vote counting (Rhodes et al., 2004; Smid et al., 2003),
probabilities (Tsiporkova and Boeva, 2008) or ranks. However,
in order not to lose any information beforehand, we perform
information reduction in the very process of combination. Co-inertia
analysis (Dolédec and Chessel, 1994) is particularly well-suited for
this task, reducing dimensions based on the common variance (co-
inertia) of two datasets. It can deal with datasets whose variables
(genes) far exceed the number of samples (arrays) and its use for
microarray data has been demonstrated before (Culhane ez al., 2003).

As a prerequisite, however, it requires either the samples or
the genes to be affiliated beforehand. In a cross-species survey of
different samples, those genes would have to be reliably affiliated
between datasets. However, sequence similarity based orthology
does not account for evolutionary phenomena such as sub- and
neo-functionalization, thus not necessarily representing functional
orthology in every case (Fierro et al., 2008). Here, instead of
identifying orthologs beforehand, affiliations are computed by our
algorithm on the basis of the expression data.

In an approach solely based on co-expression, genes that show
identical expression behavior are indistinguishable, thus becoming
one single entity. This entity can be viewed as a node in a GRN.
Comparing such networks with known interactions supplied by
KEGG and other repositories can provide an additional means
to evaluate the performance of our algorithm. To this end, out
of many algorithms proposed for network inference, we picked
DBN as one of the successful algorithms to date for time-series
(Smith et al., 2003; Yu et al., 2004). Non-time series data can be
handled, for example by information-theoretic approaches (Basso
et al., 2005) or algorithms based on ordinary differential equations
(ODE) following transcriptional perturbations (Bansal et al., 2006).
For DBN inference, as for other GRN inference methods, the number
of observations is critical. In general, due to the lack of samples, only
few genes can make it as nodes for stable network inference.

In order to obtain number and composition of nodes optimal for
inferring a common network, our algorithm increases the granularity
step by step (outer loop). For each n, the inner loop pairs the
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n clusters of each dataset, seeking for an inter-datasets affiliation of
optimal co-inertia. It does so via a combination of CIA, Hungarian
matching and majority voting, alternating between ‘connecting
variable’ affiliations. While each of these steps ‘learns’ from the
previous one, the approach is non-greedy in that each decision on
an e.g. affiliating two genes (or clusters thereof) may be reversed in
the next iteration.

Gene cluster affiliations were evaluated directly (within the same
species), by counting gene orthologs, and by inferring common
GRN. Although the second pair of datasets shows less similarity, the
common GRN does not appear less accurate than that for the first. As
the terminal granularity (final number of distinguishable clusters) is
crucial for network inference, we carefully evaluated the termination
point for our algorithm. The largest (optimal) numbers for RV, for
Silhouette values, for true positive interactions and for the yield of
network motifs all coincide for n = 12 in the first example as well as
for n =10 in the second. In the first example, the iteration part of the
algorithm could not come up to the final n because the number of
clusters cannot exceed the number of samples in the smaller dataset
(here both 10). Instead, n =12 was determined by the refinement
part while for the second dataset the decider module determined
that further refinement was not beneficial. Generally, in our hands
a yielding granularity never exceeded the number of samples
(arrays) by far if at all. However, after back-transformation and
RE, the inferred network comprises 21 significant network motifs
and the delineated edges show 72% accuracy, 91% specificity and,
remarkably, 60% sensitivity in comparison to known interactions.
Thus, the chosen granularity, although it is small in comparison
to the number of genes, resulted in a robust and most informative
network.

Furthermore, the common network shows increased specificity,
sensitivity, and accuracy, as well as more significant network motifs
if compared to the networks inferred from the single datasets. This
demonstrates that it is possible to successfully combine datasets
solely on the basis of co-expression, without applying any further
information. To our knowledge, our algorithm represents a novelty
in this respect.

External knowledge can be made available to the method via
the penalty matrices. These can be weighted according to known
similarities between genes and/or between samples. Here, however,
we choose to use all external knowledge for evaluation purposes.
Requiring no beforehand affiliation, our algorithm can be used for
automated large-scale combination of microarray datasets. Back-
transformation results in an artificial data table containing only
the variance common to the two initial tables while retaining the
scale of the first table. Thus, it can be handled like any real data
table, e.g. for subsequent GRN inference or for combining it with
yet another real data table or a combination of such. Thus, the
method can be extended to linking more than two datasets, either
hierarchically merging back-transformed data tables, or by using
multiple co-inertia analysis.

With increasing numbers of datasets to be summarized in one
model, the common variance will decrease. Generally speaking,
we would expect a tendency for such a model to be small, widely
applicable, robust, and relatively free of noise and systematic errors
when multiple experimental platforms are mixed. Extensive cross-
species models could be useful in a pharmacological context in order
to predict if a model organism closely resembles a human regulatory
mechanism to interfere with.

Furthermore, the application of our algorithm is not limited to
microarray data. It could serve to integrate proteomic, transcriptomic
and high-throughput methylation data recorded for the same
samples.
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