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MicroRNA-519a-3p mediates apoptosis resistance in
breast cancer cells and their escape from recognition
by natural killer cells

Christian Breunig*,1, Jens Pahl2, Moritz Küblbeck1, Matthias Miller2, Daniela Antonelli1, Nese Erdem1, Cornelia Wirth1, Rainer Will3,
Alexander Bott1, Adelheid Cerwenka2 and Stefan Wiemann*,1

Aggressive breast cancer is associated with poor patient outcome and characterized by the development of tumor cell variants that
are able to escape from control of the immune system or are resistant to targeted therapies. The complex molecular mechanisms
leading to immune escape and therapy resistance are incompletely understood. We have previously shown that high miR-519a-3p
levels are associated with poor survival in breast cancer. Here, we demonstrate that miR-519a-3p confers resistance to apoptosis
induced by TRAIL, FasL and granzyme B/perforin by interfering with apoptosis signaling in breast cancer cells. MiR-519a-3p
diminished the expression of its direct target genes for TRAIL-R2 (TNFRSF10B) and for caspase-8 (CASP8) and its indirect target
gene for caspase-7 (CASP7), resulting in reduced sensitivity and tumor cell apoptosis in response to apoptotic stimuli.
Furthermore, miR-519a-3p impaired tumor cell killing by natural killer (NK) cells via downregulation of the NKG2D ligands ULBP2
and MICA on the surface of tumor cells that are crucial for the recognition of these tumor cells by NK cells. We determined that
miR-519a-3p was overexpressed in more aggressive mutant TP53 breast cancer that was associated with poor survival.
Furthermore, low levels of TRAIL-R2, caspase-7 and caspase-8 correlated with poor survival, suggesting that the inhibitory effect
of miR-519a-3p on TRAIL-R2 and caspases may have direct clinical relevance in lowering patient’s prognosis. In conclusion, we
demonstrate that miR-519a-3p is a critical factor in mediating resistance toward cancer cell apoptosis and impairing tumor cell
recognition by NK cells. This joint regulation of apoptosis and immune cell recognition through miR-519a-3p supports the
hypothesis that miRNAs are key regulators of cancer cell fate, facilitating cancer progression and evasion from
immunosurveillance at multiple and interconnected levels.
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Breast cancer is the most common type of cancer in women
worldwide and represents the second leading cause of cancer
mortality in women.1,2 The broad molecular and pathological
heterogeneity of breast cancer subtypes is reflected by the
diversity of the underlying biology and a particularly poor
prognosis of some subtypes.3,4 Targeted therapies have
fundamentally improved patient outcome for estrogen
receptor-positive luminal A as well as for HER2-positive
breast cancer subtypes.5 However, particularly the luminal B
and triple-negative breast cancer (TNBC) subtypes have
remained clinical challenges.6 New treatment strategies for
TNBC employ targeted therapies inhibiting PARP, PI3K or
MEK in combination with apoptotic ligands such as TRAIL and
with chemotherapy.7–10 Chemotherapy as well as targeted
therapies aim to reduce cell growth, survival as well as
metastasis and/or induce apoptosis in breast cancer cells.
However, their efficacy is limited by the development of
therapy resistance and subsequent tumor progression.11–13

The molecular mechanisms leading to therapy resistance are
diverse, often affect apoptosis at different levels in the
signaling cascades involved and have remained incompletely
understood.14

TRAIL efficiently induced apoptosis in several cell line
models;15 however, it has been reported to even increase cell
growth and metastasis formation in TRAIL-resistant
tumors.16,17 In addition to targeting the cancer cells directly,
the (re-)activation of the immune system has become a
promising strategy in current clinical trials for the treatment of
solid tumors, including breast cancer.18,19 Activated immune
cells, like T and natural killer (NK) cells, can eliminate tumor
cells by inducing apoptosis. Mechanistically, this is mediated
via exocytosis of cytotoxic granules from NK cells, containing
perforin and granzymes, as well as via induction of the TNF
superfamily (Fas ligand and TRAIL) signaling pathways in the
tumor cells.20 However, some tumors escape T-cell as well as
NK-cell recognition and/or their killing machinery using
mechanisms that are incompletely understood.21,22

MicroRNAs (miRNAs) have previously been discovered to
play pivotal roles in many biological processes including
breast cancer development and regulation of apoptosis.23,24

MiRNAs are small non-protein-coding RNAs of ∼ 22 nucleo-
tides and aremostly negative regulators of gene expression by
targeting the three-prime untranslated regions (3′UTRs) of
target messenger RNAs (mRNAs). Recent progress in cancer
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biology has revealed that miRNAs are frequently deregulated
in various human cancers, including breast cancer, thereby
promoting cancer development and induction of drug
resistance.25–27

We have previously identified miRNA 519a-3p (miR-519a-
3p) to be upregulated in tamoxifen-resistant breast cancer
cells.28,29 MiR-519a-3p targets several tumor suppressor
genes, thereby increasing cell viability and cell cycle
progression.29 In the present study, we analyzed the effects
that miR-519a-3p has in TRAIL and Fas ligand (FasL-)-
mediated induction of apoptosis. We specifically investigated
the effects of miR-519a-3p on the susceptibility of breast
cancer cells toward NK cell-mediated cytotoxicity as a
potential mechanism for tumor cell escape from immune cell
recognition and a rather physiological trigger for apoptosis.We
show that miR-519a-3p indeed leads to inhibition of TRAIL-
and FasL-induced apoptosis in breast cancer cell lines by
directly targeting the proapoptotic TNFRSF10B (TRAIL-R2)
and CASP8 (caspase-8) mRNAs. Moreover, miR-519a-3p

decreases NK cell-mediated killing of breast cancer cells by
downregulating tumor cell ligands for the NK cell-activating
receptor NKG2D and conferring resistance toward granzyme
B- as well as TRAIL-induced apoptosis. Consequently, we
propose a model in which miR-519a-3p is involved in
aggressive and/or therapy-resistant breast cancer by facilitat-
ing evasion of NK cell recognition as well as by inducing
resistance toward apoptosis formation.

Results

TRAIL-R2, caspase-7 and caspase-8 are regulated by
miR-519a-3p. In a previous study, we had identified
miR-519a-3p as an oncomiR in luminal A breast cancer that
is upregulated in tamoxifen-resistant MCF-7 breast cancer
cells and increases cell viability as well as cell cycle
progression.28,29 Here, we set out to investigate the impact
that miR-519a-3p has within breast cancer cells in response
toward apoptotic stimuli. Using TargetScan (version 7.1,
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Figure 1 TRAIL-R2 is a direct target of miR-519a-3p. (a) qRT-PCR reveals downregulation of TRAIL-R2 (TR2), but not TRAIL-R1 (TR1) and Fas in MCF10A, MDA-MB-231,
HCC1143, T47D and MDA-MB-468 cells. Cells were transfected with miRNA control or miR-519a-3p for 48 h, mRNA was isolated and gene expression of TRAIL-R1, TRAIL-R2
and Fas was analyzed (n= 3). (b) Schematic representation of the miR-519a-3p target sites within the 3′UTR of TNFRSF10B (TRAIL-R2) mRNA. (c) Luciferase reporter assays
were performed using psiCHECK constructs in MCF-7 cells. Luciferase activity of TNFRSF10B 3′UTR is reduced after miR-519a-3p transfection compared with control. The
signal of the wt UTR (TRAIL-R2-wt) is rescued after mutating all three binding sites for miRNA-519a-3p (TRAIL-R2-trip.mut) (n= 6). Data are expressed as mean+S.D.;
**Po0.01, ***Po0.001. All P-values are based on analysis of miRNA control versus miR-519a-3p
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http://www.targetscan.org/vert_71/) and DAVID (version 6.7,
https://david.ncifcrf.gov/) we identified enriched KEGG path-
ways predicted to be targeted by miR-519a-3p. The apoptosis
signaling pathway (e.g., through death ligands FasL and
TRAIL) was among the top (Supplementary Table S1 and
Supplementary Figure S1).

In accordance with these in silico data, overexpression of
miR-519a-3p consistently reduced the expression of
TNFRSF10B (TRAIL-R2) but not of TNFRSF10A (TRAIL-
R1) or FAS mRNA in the immortalized but nontrans-
formed MCF10A epithelial cell line as well as in several
breast cancer cell lines, MDA-MB-231, HCC1143, T47D and
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Figure 2 MiR-519a-3p downregulates caspases-7 and -8 at RNA and protein levels. (a) qRT-PCR reveals downregulation of CASP7 and CASP8 by miR-519a-3p in MCF10A,
MDA-MB-231, T47D, HCC1143 and MDA-MB-468 cells (n= 3). (b) Western blot analysis confers qRT-PCR results showing downregulation of caspases-7 and -8 by miR-519a-
3p (miR-519a). β-Actin was used as a loading control. (c) Schematic representation of the miR-519a-3p target sites within the 3′UTR of caspase-7 and caspase-8 mRNA. (d)
Luciferase activity is reduced after miR-519a-3p transfection compared with control with the wild-type CASP8 (CASP8-wt) but not with the CASP7 (CASP7-wt) 3′UTR in MCF10A
cells. The signal is rescued after mutating binding site for miRNA-519a-3p (CASP8-mut) (n= 6). Data are expressed as mean+S.D.; *Po0.05, **Po0.01, ***Po0.001.
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MDA-MB-468 (Figure 1a). In addition, cell surface expre-
ssion of TRAIL-R2 was reduced in these conditions,
indicating that miR-519a-3p also negatively regulated
TRAIL-R2 expression at the protein level (Supplementary
Figure S2).
To determine whether reduced expression of TRAIL-R2

resulted from direct targeting of miR-519a-3p to the 3′UTR of
TNFRSF10B mRNA, a reporter gene construct was cloned
with the 3′UTR of the TNFRSF10B gene downstream of the

Renilla luciferase open reading frame (Figure 1b). Co-trans-
fection of this reporter gene construct with miR-519a-3p
revealed that miR-519a-3p specifically reduced relative
luciferase reporter activity (Figure 1c). Next, we introduced
mutations into all three predicted miR-519a-3p binding sites
within the reporter gene construct bymutating four nucleotides
each within the seed-matching sequences of the UTR to
validate specificity of miR-519a-3p targeting (Figure 1b).
Disruption of all three putative target sites indeed abrogated
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Figure 3 Elevated expression of miR-519a-3p induces resistance toward apoptosis induction. (a) RTCA (real-time cell analyzer) viability assay of MCF10A cells transfected
with microRNA control or miR-519a-3p. Transfected cells were seeded in E-16 plates and were then treated with TRAIL (at t= 36 h) or FasL (t= 18 h). TRAIL (250 ng/ml; left
panel) and FasL (10 μg/ml; right panel) treatment induced a decrease in cell index (as proxy for cell viability) in miRNA control-transfected but not miR-519a-3p-transfected
MCF10A cells (n= 6). (b) TRAIL- and FasL-induced apoptosis was reduced upon overexpression of miR-519a-3p in MCF10A cells using Annexin V and 7-AAD. MCF10A were
transfected with miR-519a-3p or miRNA control for 48 h and then treated with 60 ng/ml TRAIL, 5 μg/ml FasL or medium control for additional 24 h. Shown is the analysis of early
(Annexin V positive and 7-AAD negative) and late (Annexin V positive and 7-AAD positive) apoptosis (n= 3). (c) TRAIL (60 ng/ml)-induced DNA fragmentation was reduced by
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expressed as mean± S.D.; *Po0.05, **Po0.01, ***Po0.001. All P-values are based on analysis of miRNA control versus miR-519a-3p
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the miR-519a-3p-mediated reduction in luciferase activity and
confirmed that TRAIL-R2 is a direct target of miR-519a-3p
(Figure 1c).

In addition to TRAIL-R2, caspases-7 and -8, both key
players in apoptosis induction by, for example, TRAIL and
FasL,30 were predicted to be targeted by miR-519a-3p

Med
ium

GrzB
/Perf

orin
0

2 105

4 105

6 105

A
ct

iv
e

ca
sp

as
e

3/
7

(R
LU

)

miRNA control
miR-519a-3p

x

x

x

x

Med
ium

GrzB
/Perf

orin
0

5.0 105

1.0 106

1.5 106

2.0 106

A
ct

iv
e

ca
sp

as
e

3/
7

(R
LU

)

sicontrol
siCASP7

siCASP8
siTRAIL-R2

x

x

x

x

MIC
A-w

t

MIC
A-m

ut

ULBP2-w
t

ULBP2-m
ut

0.0

0.5

1.0

1.5

R
el

at
iv

e
lu

ci
fe

ra
se

ac
tiv

ity

miRNA control
miR-519a-3p

3.13:1 6.25:1 12.5:1 25:1
0

20

40

60 miRNA control
miR-519a-3p

miRNA control
miR-519a-3p

***
***

***
***

NK : MCF10A cells

Sp
ec

ifi
c

ly
si

s
of

M
C

F1
0A

(%
)

3.13:1 6.25:1 12.5:1 25:1
0

20

40

60

**

***
***

NK : MDA-MB-468 cells

Sp
ec

ifi
c

ly
si

s
of

M
D

A
-M

B
-4

68
(%

)

3.13:1 6.25:1 12.5:1 25:1
0

20

40

60

miRNA control
miR-519a-3p

***
***

***
***

NK : HCC1143 cells

Sp
ec

ifi
c

ly
si

of
H

C
C

11
43

(%
)

MCF10A T47D MDA-MB-468HCC1143MDA-MB-231

Fluorescence intensity

C
ou

nt
s

M
IC

A
U

LB
P2

Isotype control miRNA control miR-519a-3p

3.2
10.4

7.8

2.7
6.5
3.3

3.8
3.7
4.2

3.3
3.5
3.7

3.9
7.5
4.1

3.2
24.4
12.4

2.7
9.8
6.1

3.5
7.0
6.6

3.6
14.0

8.6

3.9
22.1

8.2

*** ******
***
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(Supplementary Figure S1). In line with the predictions,
overexpression of miR-519a-3p reduced mRNA as well as
protein expression of both caspases in MCF10A cells as well
as in MDA-MB-231, HCC1143, T47D and MDA-MB-468
breast cancer cell lines (Figures 2a and b). Again employing
luciferase reporter assays and site-directed mutagenesis, we
identified CASP8 as another direct target of miR-519a-3p
(Figures 2c and d). In contrast, miR-519a-3p did not alter the
luciferase activity when the 3′UTR reporter gene construct for
CASP7 was tested (Figure 2d).
In conclusion, we demonstrated that miR-519a-3p is a direct

regulator of TRAIL-R2 and caspase-8 expression, whereas
the modulation of caspase-7 expression appears to be
indirect.

MiR-519a-3p inhibits apoptosis induction by TRAIL and
Fas ligand via TRAIL-R2, caspase-7 and caspase-8. We
next investigated whether increased levels of miR-519a-3p
would potentially protect from TRAIL- and FasL-induced
apoptosis, as we had observed that the induction of apoptosis
by TRAIL and FasL was mediated by TRAIL-R2 and caspase
activation in some cell lines (Supplementary Figures S3 and
S4). To this end, MCF10A as well as several breast cancer
cell lines were transfected with miR-519a-3p or a control
miRNA and were then treated with TRAIL or anti-Fas
antibody (FasL) to induce apoptosis. Indeed, only MCF10A
cells overexpressing miR-519a-3p retained normal cell
viability despite TRAIL or anti-Fas treatment (Figure 3a). To
substantiate that this effect was due to inhibition of apoptosis,
MCF10A, MDA-MB-231, HCC1143 and T47D cells were
incubated with TRAIL or FasL, and were then tested for the
activities of extrinsic and intrinsic apoptosis signaling
pathways.31 Indeed, early (Annexin V positive and 7-AAD
negative) and late (Annexin V positive and 7-AAD positive)
apoptosis (Figure 3b and Supplementary Figure S5a), DNA
fragmentation (Figure 3c), caspase-3/7 activity (Figure 3d
and Supplementary Figure S5B) and loss of mitochondrial
potential (Supplementary Figure S5c) were all specifically
impaired in miR-519a-3p-overexpressing cells. Similarly,
stable transfection of MDA-MB-231 cells with miR-519a-3p
induced resistance toward TRAIL treatment (Supplementary
Figures S5d and e). Reducing miR-519a-3p levels with
antagomirs in MCF10A cells as well as in MDA-MB-231
stably expressing miR-519a-3p led to an increase in
apoptosis induction upon TRAIL treatment (Supplementary
Figures S6a and b). Of note, MDA-MB-231 cells were
resistant toward FasL-induced apoptosis (Figures 3c and d
as well as Supplementary Figures S3a and S5a and c) even
though they express Fas at low levels at the cell surface
(Supplementary Figure S2).
We next wanted to know whether miR-519a-3p overexpres-

sion would also confer resistance to other apoptosis-inducing
agents. Indeed, miR-519a-3p protected cells from apoptosis
upon treatment with staurosporine, a potent inducer of
apoptosis through both caspase-dependent and caspase-
independent mechanisms (Supplementary Figure S7a).32 To
test whether miR-519a-3p can influence the effect of
chemotherapeutic drugs typically used in the treatment of
patients with aggressive breast cancer, miR-519a-3p-
transfected MDA-MB-231 breast cancer cells were treated

with paclitaxel (Taxol). Indeed, viability was reduced in
paclitaxel-treated cells, in a dose-dependent manner, and to
a lesser extent in miR-519a-3p-overexpressing cells as
compared with control cells. These results suggest that
miR-519a-3p can protect tumor cells from chemotherapy, like
paclitaxel (Supplementary Figure S7b).
These data support a mechanistic model in whichmiR-519a

mediates resistance to TRAIL and Fas ligand as well as to
chemotherapeutic drugs via blockade of apoptosis.

MiR-519a-3p inhibits NK cell-mediated cytotoxicity by
reducing the surface expression of NKG2D ligands on
tumor cells. Killing of cancer cells by NK cells is also
mediated by the cytolytic proteins perforin, granzymes as well
as TRAIL, all inducing apoptosis in target cells.33–35 Of note,
we found granzyme B-induced apoptosis and caspase-7
activation to be reduced by miR-519a-3p (Figures 4a and b).
Hence, to test in a more physiological context whether
miR-519a-3p mediates apoptosis resistance, we investigated
whether miR-519a-3p might protect breast cancer cells from
killing by human primary NK cells. We identified MICA and
ULBP2, two key ligands for the NK cell-activating receptor
NKG2D, among the predicted miR-519a-3p target genes
(Supplementary Figure S8). Killing of MCF10A, MDA-MB-468
and HCC1143 cells by NK cells was indeed reduced after
blockage of NKG2D on NK cells using an anti-NKG2D
antibody or upon siRNA-mediated knockdown of MICA or
ULBP2 in tumor cells. This shows that the NKG2D ligands
MICA and ULBP2 are crucial for NK cell cytotoxicity against
these breast cancer cells (Supplementary Figure S9).
To corroborate the targeting of MICA and ULPB2 by

miR-519a-3p, we identified potential miR-519a-3p binding
sites in the 3′UTR of the genes of MICA and ULBP2 using
TargetScan (Supplementary Figure S10). Luciferase reporter
assays and using wild-type and mutated 3′UTR binding sites
of miR-519a-3p revealed that MICA and ULBP2 were both
direct targets of miR-519a-3p (Figure 4c). Indeed, miR-519a-
3p reduced the mRNA levels and surface protein levels of
MICA and ULBP2 in MCF10A, MDA-MB-231, HCC1143,
T47D as well as MDA-MB-468 cells, whereas other NKG2D or
DNAM-1 ligands like ULBP1, ULBP3, ULBP4, MICB and
CD155 were not significantly affected by miR-519a-3p
(Figure 4d and Supplementary Figures S11a and b).
To test whether resistance to apoptosis as well as down-

regulation of NK cell ligands by miR-519a-3p results in lower
NK cell-mediated lysis of breast cancer cells, we co-cultured
51Cr-loaded MCF10A, MDA-MB-468 and HCC1143 cells with
IL-2-activated NK cells and then analyzed 51Cr release as a
measure for tumor cell killing by NK cells. When over-
expressed with miR-519a-3p, the lysis of tumor cells by NK
cells was significantly reduced as compared with tumor cells
transfected with a control miRNA (Figure 4e). This reduced
lysis of miR-519a-3p-overexpressing cells was restored in the
presence of a miR-519a-3p antagomir (Supplementary
Figure S12), confirming specificity of the miRNA effect. In
addition, although NK cell degranulation, based on externa-
lization of CD107a, was abrogated toward miR-519a-3p-
overexpressing MCF10A cells, NK cell degranulation was
rescued when miR-519a-3p-overexpressing MCF10A cells
additionally overexpressedMICA andULBP2 (Supplementary
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Figure S13). Thus, miR-519a-3p impaired NK cell activation
and degranulation by the downregulation of MICA andULPB2.
Collectively, these data demonstrate that miR-519a-3p

impairs recognition and killing of breast cancer cell by NK
cells via direct targeting of MICA and ULBP2 in addition to
inhibiting caspase-7-induced apoptosis.

Low levels of caspases-7 and -8 as well as TRAIL-R2
correlate with poor disease-free survival and miR-519a-
3p is higher expressed in advanced-grade breast cancer.
We and others have shown clinical relevance of miR-519a-3p
and MICA/ULBP2 in breast cancer.29,36 Although low levels of
MICA and ULBP2 correlate with poor clinical outcome in
breast cancer patients,36 miR-519a-3p is elevated in higher-
grade breast cancer29 and correlates with reduced relapse-
free survival (Supplementary Figures S14a and b). Here, we
analyzed the impact of the expression of direct and indirect
miR-519a-3p target genes CASP8, TNFRSF10B and CASP-7
on the clinical outcome using published breast cancer data
sets. Low expression of CASP7, CASP8 and TNFRSF10B,
alone and in combination, correlated with shorter relapse-free
survival (Figures 5a–d and Supplementary Figure S14C).
These findings are in line with our experimental data and
suggest a causal role of miR-519a-3p in aggressive breast
cancer.
This is further supported by our observation that miR-519a-

3p was higher expressed in estrogen receptor-negative
(ER− ) than in estrogen receptor-positive (ER+) breast cancer

(Figure 5e) as well as in ER− breast cancer cell lines.29 The
ER− breast cancer is mostly associated with mutations in
TP53 and associated with poor survival.37 Clinical data show
that miR-519a-3p expression was elevated in breast tumors
with mutated TP53 (Figure 5f) and that the latter was
correlated with poor relapse-free survival (Supplementary
Figure S15).
Altogether, our findings reveal that high levels of miR-519a-

3p as well as low levels of CASP7, CASP8 and TNFRSF10B
correlate with poor disease-free survival.

Discussion

Breast cancer is a highly heterogeneous disease and the
clinical outcome strongly correlates with the respective tumor
subtype.1 Deregulated apoptosis, mostly via mutations in
TP53, is a common driving factor in most tumor diseases.38

Hence, the induction of apoptosis in tumor cells is a highly
relevant mechanism in anticancer therapy.14 Currently, there
are several strategies for targeting apoptosis in breast cancer
immunotherapy and chemotherapy. Besides TRAIL and FasL,
apoptosis can be induced by various stimuli and through
diverse mechanisms.32,39,40 However, development of resis-
tance toward apoptosis is one major clinical challenge.14,21

Anthracyclines and taxanes have remained major first-line
chemotherapies in treatment of metastatic luminal B and
TNBC11 despite the development of acquired or de novo
resistance in metastatic and high-grade breast cancer.41

Figure 5 Correlation of CASP7/8 and TNFRSF10B levels with survival outcome and miR-519a-3p with mutant TP53 expression. (a–c) Low expression of TNFRSF10B,
CASP7 and CASP8 (black curves) correlate with poorer survival of breast cancer patients (KM Plotter). (d) Lower combined mean expression of TNFRSF10B, CASP7 and
CASP8 expression (black curve) correlate with poorer survival of breast cancer patients (KM Plotter). (e) Analysis of breast cancer patient data set GSE22220 revealed that
miR-519a-3p is higher expressed in estrogen receptor-negative (ER− ) compared with estrogen receptor-positive (ER+) tumors. (f) Analysis of breast cancer patient data set
GSE19783 revealed that miR-519a-3p is higher expressed in tumors with mutated in TP53 (TP53 Mut) than in tumors with wild-type TP53 (TP53 WT)
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Ajabnoor et al.42 showed that paclitaxel resistance is
associated with diminished apoptotic response by loss of
caspase-mediated cell death. In the present study, our data
indicate that miR-519a-3p contributes to resistance to TRAIL,
FasL, granzyme B/perforin as well as to paclitaxel treatment.
In addition, miR-519a-3p reduces activation and cytotoxicity of
NK cells, suggesting that this miRNA could play an important
role in the regulation of apoptosis in breast cancer. Our
findings are corroborated by breast cancer patient data,
showing that high expression of miRNA-519a-3p and low
coexpression of the target genes CASP7, CASP8 and
TNFRSF10B correlate with poor relapse-free survival in
breast cancer patients. Consequently, we show here for the
first time that miR-519a-3p is involved in resisting cell death
and avoiding immune destruction of breast cancer cells at the
same time. On the one hand, miR-519a-3p influences the
tumor microenvironment by facilitating evasion of NK cell
recognition and, on the other hand, induces resistance toward
apoptosis formation within the breast cancer cells, as
schematically summarized in Figure 6.
In recent years, genomic and transcriptomic data of breast

cancer samples have led to a subclassification of breast cancer
subtypes.3,43 The correlation with breast cancer subtypes as
well as with poor or good prognosis of patients has been
demonstrated for several miRNAs.27,44–46 MiRNAs have been
described as regulators of many different biological processes,
including immune and apoptosis regulation in cancer, and
thereby shaping the tumor microenvironment.24,47–51 We and
others have previously described that miR-519a-3p promotes
proliferation in tamoxifen-resistant ER+ breast cancer and
hepatocellular carcinoma.29,52,53 Using publically available data
sets, we observed that higher miR-519a-3p expression
associates with poor survival of breast cancer patients.29

Elevated miR-519a-3p levels were found particularly in more
aggressive ER− as well as in histopathologic grade 3 breast
cancer subtypes. TNBC often harbors TP53 mutations and,
using publicly available data sets, we found that specifically
TP53 mutant breast tumors express elevated levels of
miR-519a-3p. TP53 mutations are rare in small and low-grade
tumors, whereas the frequency increases with the size and
grade of tumors.54 Furthermore, breast cancer patients with
somatic TP53 mutations have shorter disease-free survival
compared with patients with wild-type TP53, and respond
less well to chemotherapy, antihormonal therapy or
radiotherapy.55,56 In future studies it has to be analyzedwhether
elevation of miR-519a-3p in TP53-mutated patients is directly
regulated by p53 and/or other factors.
NK cell-mediated clearance of cancerous cells is a central

intrinsic mechanism counteracting tumor development. Acti-
vated NK cells can induce tumor cell apoptosis via membrane-
bound or soluble TRAIL and Fas ligands aswell as by releasing
granules that contain perforin and granzymes.33,34 Breast
cancer cells have been described to evade immunosurveillance
that may be imposed by tumor-intrinsic factors or the
immunosuppressive cancer microenvironment.22,57,58 They
can escape NK cell-mediated cytotoxicity by diverse mechan-
isms that are independent of the breast cancer subtype.22,59

Besides this, breast cancer cells are often resistant against
apoptosis induction, thus limiting the clinical effectiveness of
apoptosis-inducing agents.21,47,60

In this study, we demonstrate that miR-519a-3p is a novel
tumor-intrinsic factor, regulating breast cancer cell recognition
and killing by NK cells. We identified miR-519a-3p to induce
resistance toward NK cell-mediated cytotoxicity by inhibiting
FasL-, TRAIL- and granzymeB-induced apoptosis. TRAIL and
FasL bind to their corresponding receptors on target cells,
thereby inducing apoptosis through the extrinsic and intrinsic
apoptosis pathways. It has previously been revealed that
several genes andmiRNAs either directly or indirectly regulate
the TRAIL-induced apoptosis pathway.61 Here, we have
shown that miR-519a-3p confers resistance toward TRAIL-
and FasL-induced apoptosis by downregulating both TRAIL-
R2 and caspase-8. This is in accordance to Zhang and
Zhang60 who reported that constitutively endocytosed TRAIL-
R1 and TRAIL-R2 led to TRAIL resistance. Upon binding of
TRAIL to its receptors TRAIL-R1 and TRAIL-R2, endogenous
FADD and caspase-8 become recruited to the receptor.62 In
the present work, we show that caspase-8 is required for
apoptosis induction by TRAIL and FasL and that expression of
CASP8 is correlated with patient survival. Caspase-7 was also
downregulated by miR-519a-3p, but it does not seem to be a
direct target. MacFarlane et al.63 reported that caspase-7 gets
activated upon stimulation with TRAIL in MCF-7 cells,
whereas our data indicate that caspase-7 is not required for
TRAIL- and FasL-induced apoptosis in MCF10A and MDA-
MB-231 cell lines. However, caspase-7 is indeed necessary
for TRAIL- and FasL-induced apoptosis in HCC1143 and
T47D breast cancer cells, suggesting a cell line- or cell type-
specific effect of caspase-7. In addition to TRAIL and FasL, NK
cells kill target cells by releasing granules containing perforin
and granzymes.64 Martin and colleagues65,66 revealed that
granzyme B can promote apoptosis by direct processing of
effector caspases-3 and -7. This is consistent with our data

Figure 6 Mechanistic model of miR-519a-3p activities negatively regulating
apoptosis induction and NK cell activation. Higher expression of miR-519a-3p blocks
TRAIL- as well as FasL-induced apoptosis signaling pathways by decreasing TRAIL-
R2, caspase-7 and caspase-8 expression. Furthermore, the miRNA blocks granzyme
B/perforin-induced apoptosis by decreasing caspase-7. Finally, miR-519a-3p
abrogates NK cell activation through reduced expression of MICA and ULBP2.
Hence, miR-519a-3p induces escape of breast cancer cells from NK cell-mediated
cytotoxicity and resistance toward apoptosis induction, thus synergistically
contributing to cancer cell survival
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that suggest a key function of caspase-7 in granzyme-B
mediated apoptosis.
NK cell-mediated cytotoxicity is regulated by inhibitory killer

cell immunoglobulin-like receptors (KIRs) and activating
receptors including NKG2D expressed on NK cells.59 We
and others have previously shown that MICA, MICB and
ULBPs are important factors in the activation of NK cells.67–69

In tumor cells, different mechanisms enable their escape from
recognition by NK cells, such as the secretion of soluble
inhibitory factors or the downregulation of activating ligands.59

Previous studies have shown that miRNAs of the miR-17-92
cluster, miR-10b, and miR34a/c mediate the escape of tumor
cell recognition by NK cells by targeting MICA, MICB and
ULBP2, respectively.49,70–72 Complementary, altered miR-183
expression in NK cells silenced their antitumor cytotoxic
potential by targeting DAP12.73 In this study, we demonstrate
that the NKG2D ligands MICA and ULBP2 are downregulated
by miR-519a-3p in breast cancer cells MDA-MB-231,
HCC1143, T47D, MDA-MB-468 as well as in MCF10A cells,
thereby attenuating NK cell activation and reducing NK cell-
mediated cytotoxicity. This effect was effectively abrogated by
blocking miR-519a-3p with antagomirs. Suppression of
NKG2D on primary human NK cells or downregulation of
MICA or ULBP2 with siRNA mimicked the effect of miR-519a-
3p and reduced NK cell activation as well as cytotoxicity that is
in line with previous studies on NKG2D function.59,67,68,72 In
addition, low levels of MICA/B and ULBPs correlate with poor
clinical outcome in breast cancer patients.36 Besides NK cells,
NKG2D is also expressed on the cell surface of human CD8+

T cells and transmits a costimulatory signal.74 Future research
will be required to unravel the effect of miR-519a-3p on CD8+

T-cell activation via NKG2D.
In conclusion, overcoming apoptosis resistance and tumor

immune escape are key switches to successfully develop
targeted apoptosis and immune therapies. Although miRNAs
often do not act alone but rather in concert and on a range of
mRNAs and genes in tumor cells26 and in stromal cell types,48

we here provide evidence that miR-519a-3p promotes cancer
cell survival by a combination of abrogated NK cell activation
as well as development of resistance toward NK cell-mediated
cytotoxicity and induction of tumor cell apoptosis by synergis-
tically regulating functionally connected pathways.

Materials and Methods
Cell culture. Cell lines MCF10A (CRL-10317), MDA-MB-231 (HTB-26), MCF-7
(HTB-22), T47D (HTB-133), HCC1143 (CRL-2321) and MDA-MB-468 (HTB-132)
were obtained from the American Type Culture Collection (LGC Standards GmbH,
Wesel, Germany). MDA-MB-231 cells were maintained in Leibovitz’s L-15 medium
(10% FBS, 1% L-glutamine, 1% nonessential amino acids (NEAA), 50 units/ml
penicillin and 50 μg/ml streptomycin sulfate (all from Invitrogen AG, Carlsbad, CA,
USA)). MCF-7 were cultured in MEM (10% FBS, 1% NEAA, 0.01 mg/ml bovine
insulin (Sigma-Aldrich, St. Louis, MO, USA), 50 units/ml penicillin and 50 μg/ml
streptomycin sulfate). MCF10A cells were cultured in DMEM F12 medium (5%
horse serum (Thermo Fisher Scientific, Waltham, MA USA), 20 ng/ml EGF (BD
Biosciences, Franklin Lakes, NJ, USA), 0.5 μg/ml Hydrocortisone (Sigma-Aldrich),
100 ng/ml cholera toxin (Sigma-Aldrich), 0.01 mg/ml bovine insulin (Sigma-Aldrich),
50 units/ml penicillin and 50 μg/ml streptomycin sulfate). T47D were cultured in
RPMI medium (10% FBS, 1% NEAA, 50 units/ml penicillin and 50 μg/ml
streptomycin sulfate) and MDA-MB-468 and HCC1143 cells were cultured in RPMI
medium (10% FBS, 50 units/ml penicillin and 50 μg/ml streptomycin sulfate).
PBMCs from healthy donors were isolated by Ficoll separation (LSM 1077
lymphocyte separation medium; PAA Laboratories, Pasching, Austria). NK cells

were purified by negative selection (Human NK cell isolation kit; Miltenyi Biotec,
Bergisch-Gladbach, Germany) with a purity of CD3-CD56+ NK cells 495%. NK
cells were incubated in SCGM medium (CellGenix, Freiburg, Germany) containing
10% human serum (PAA Laboratories), 1% penicillin and 1% streptomycin
(Invitrogen) with 200 IU/ml IL-2 (National Institutes of Health, Bethesda, MD, USA)
overnight for the CD107a assay and for 2 days for 51Cr release assays. All cells
lines were authenticated by Multiplexion (Heidelberg, Germany) and negatively
tested for mycoplasma contamination before and after completion of the study.

Transfections and reagents. Transfections of siRNA, miRNAs, miRNA
vectors, gene expression vectors and luciferase vectors were performed using
Lipofectamine 2000 or Lipofectamine RNAiMax (both from Invitrogen) according to
the manufacturer’s instructions. ON TARGETplus siRNAs targeting TRAIL-R2,
CASP7, CASP8 and TP53 were from Dharmacon (Lafayette, CO, USA). For each
gene, three to four individual siRNAs were pooled (listed in Supplementary Table
S2). ON TARGETplus nontargeting siRNA pool (Dharmacon) was used as control.
miRIDIAN miRNA mimics miR-519a-3p (5′-AAAGUGCAUCCUUUUAGAGUGU-3′),
miRNA hairpin inhibitors and negative controls (miRNA control and inhibitor control)
were obtained from Dharmacon. The siRNAs, miRNA mimics and miRNA inhibitors
were used at a final concentration of 30 or 50 nM. pCMV-MIR vector MIR519A2
(MI0003182) as well as empty vector control were obtained from OriGene
(Rockville, MD, USA) and stable MDA-MB-231 cells were generated using G418
(Thermo Fisher Scientific). MCF10A cells were stably transfected with MICA,
ULBP275 or EMPTY vector using pmx-pie retroviral vectors and amphotropic
Phoenix packaging cells as previously described,76 and then selected in complete
medium containing 1 μg/ml puromycin. To analyze cell proliferation, cell viability
and/or apoptosis, the following reagents were used: TRAIL (PeproTech, Rocky Hill,
NJ, USA), mouse anti human anti-Fas antibody (APO-1-3) used as ‘FasL’, granzyme
B, perforin (both from Enzo Life Sciences, Farmingdale, NY, USA), staurosporine
(Roche, Basel, Switzerland) and paclitaxel (Sigma-Aldrich). Concentrations were
used as indicated and control cells were treated with respective solvents.

Luciferase reporter assays. To validate direct targeting of miR-519a-3p, 3′
UTR of the putative target genes TRAIL-R2, caspase-7, caspase-8, ULBP2, MICA
and CD155 were cloned in the psiCHECK2 vector (Promega, Fitchburg, WI, USA)
as previously described.26 Vectors, containing the respective 3′UTRs, were co-
transfected with mimic miRNAs in MCF-7 or MCF10A cells. At 48 h after
transfection, Renilla and Firefly luciferase activities were determined using a
luminometer (Tecan, Männedorf, Switzerland). Mutations within each of the
predicted target sites of MICA, ULBP2, TRAIL-R2 and caspase-8 3′UTRs were
generated by site-directed mutagenesis using QuikChange II Site-Directed
Mutagenesis Kit (Agilent Technologies, Santa Clara, CA, USA) according to the
manufacturer’s instructions (Supplementary Table S3).

Antibodies, immunoblotting and flow cytometry. For western
blotting, cells were lysed in ice-cold M-PER lysis buffer (Thermo Fisher Scientific)
containing NaF, Na3VO4, protease inhibitor Complete Mini (Roche) and
phosphatase inhibitor PhosSTOP (Roche). Protein concentrations were determined
by BCA Protein Assay Reagent Kit (Thermo Fisher Scientific) and proteins were
denatured with 4 × Roti Load (Carl Roth, Karlsruhe, Germany) at 95 °C for 5 min.
Depending on the size, proteins were separated by 12 and 15% SDS-PAGE, blotted
onto a PVDF membrane Immobilon-FL (Merck Millipore, Darmstadt, Germany) and
exposed to primary antibodies. The following antibodies were used: purified mouse
anti-caspase-7 (clone C7, 9494; CST, Danvers, MA, USA), caspase-8 (clone 1C12,
9746, CST) and β-actin (MP Biochemicals, Santa Ana, CA, USA) as a loading
control for each gel. Blots were probed with IRDye680- or IRDye780-conjugated
secondary antibodies (H+L) and bands were visualized using an Odyssey scanner
(LI-COR, Lincoln, NE, USA). Primary antibodies were used in a 1 : 1000 dilution
and secondary antibodies in a 1 : 10 000 dilution. For flow cytometry, the following
antibodies were used: purified mouse anti-MICA (clone 159227; R&D Systems,
Wiesbaden-Nordenstadt, Germany), MICB (clone 236511; R&D Systems), ULBP1
(clone 170818, R&D Systems), ULBP2 (clone 165903, R&D Systems), ULBP3
(clone 166510, R&D Systems), ULBP4 (clone 709116, R&D Systems), mouse anti-
CD155 (clone PV.404; Beckman Coulter, Brea, CA, USA), mouse anti-TRAIL-R1
(clone HS101), mouse anti-TRAIL-R2 (clone HS201), mouse anti-Fas antibodies
(clone Apo-1-3, all three from Enzo Life Sciences) and IgG Isotype control (Sigma-
Aldrich). Secondary FITC Goat anti-Mouse IgG/IgM or APC Goat anti-Mouse
antibodies (both from BD Biosciences) were used. Cells were analyzed by flow
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cytometry (FACSCalibur, BD Biosciences) and FlowJo 9.3.2 software (Treestar,
Ashland, OR, USA).

RNA isolation and quantitative real-time PCR. Total RNA was isolated
from cells using RNeasy Mini kit (Qiagen, Venlo, The Netherlands) according to the
manufacturer’s instructions. For mRNA, cDNA synthesis was carried out with the
Revert Aid H Minus First Strand cDNA Synthesis Kit (Fermentas, Waltham, MA,
USA). The quantitative RT-PCR (qRT-PCR) reactions for target genes were
performed using ABI Prism 7900HT Sequence Detection System (Applied
Biosystems, Foster City, CA, USA), using probes from the Universal Probe Library
(Roche) (listed in Supplementary Table S4). The housekeeping genes ACTB and
TFRC were used for normalization of mRNA analysis. MicroRNA was isolated from
cells using miRNeasy Mini kit (Qiagen) according to the manufacturer’s instructions.
For miRNAs, the TaqMan microRNA reverse transcription kit and TaqMan gene-
specific microRNA assays (Applied Biosystems) were used. For the qRT-PCRs,
RNU44 and RNU48 were used as housekeeping controls. Data were acquired using
a HT-7900 TaqMan instrument (Applied Biosystems) and analyzed with the ΔΔCT
algorithm.

Viability assays. RTCA (real-time cell analyzer) viability assay measures the
effect of any perturbations in a label-free real-time setting. Electrical impedance
(cell index (CI)) increases when cells adhere to the electronic sensors on bottom of
the well. The increase in the impedance correlates with increasing cell numbers and
cell adhesion. For RTCA experiments, transfections were performed as described
above. Cells were seeded in RTCA E-plate 16 (Omni Life Science, Bremen,
Germany) in full growth medium. After initial growth (18–36 h), cells were treated
with 250 ng/ml TRAIL, 10 μg/ml FasL or medium and additional cell growth was
measured. For cell viability assay on MDA-MB-231, cells were treated with different
concentrations of paclitaxel (Taxol) as indicated in the figure legends for 72 h and
measured using the CellTiter-Glo Luminescent Cell Viability Assay kit (Promega).
The assay was performed using the manufacturer’s protocol.

Apoptosis assays. Quantification of DNA fragmentation was performed by
FACS analysis of propidium iodide-stained nuclei as previously described,77 using a
FACSCalibur flow cytometer (BD Biosciences) and the FlowJo software system.
Apoptosis detection using Annexin V and 7-AAD was performed as described by the
manufacturer’s protocol (BioLegend, San Diego, CA, USA). Caspase-3/7 activity
was measured using the caspase-3/7 glo kit (Promega). The assay was performed
using the manufacturer’s protocol. For analyzing mitochondrial membrane potential,
cells were harvested using 0.25% trypsin, washed once with PBS and stained with
50 nM 1,1'dihexadecyl-3,3,3',3'-tetramethylin-docarbocyanine perchlorate (DiIC1(5))
according to the manufacturer’s protocol (Thermo Fisher Scientific) and analyzed by
flow cytometry (FACS Calibur). To induce death receptor-mediated apoptosis, we
used the monoclonal antibody anti-APO-1 IgG3 κ for CD95-mediated apoptosis and
TRAIL at concentrations as indicated in the figure legends. To block caspase-
mediated apoptosis, 25 μM of broad-spectrum caspase inhibitor ZVAD-fmk (R&D
Systems) was applied 30 min prior and during TRAIL and anti-Fas antibody
treatment.

51Cr release assay. Target cells (0.5–1 × 106 per 100 μl) were labeled with
100 μl of Na-chromate (51Cr, ∼ 3.7 MBq) (Perkin Elmer, Waltham, MA, USA) for
90 min at 37 °C. After three times washing, 2.5 × 104 target cells were added to
purified IL-2-activated NK cells at increasing effector/target (E/T) ratios in triplicate in
200 μl. When indicated, NK cells were incubated with 10 μg/ml of anti-NKG2D
(1D11) or isotype control for 20 min before the addition of target cells. After 4 h,
50 μl of cell-free supernatants were harvested, transferred to LumaPlate-96 (Perkin
Elmer) and air-dried overnight. Release of 51Cr was measured with a TopCount
NXT γ-counter (Perkin Elmer). Spontaneous and total 51Cr release was obtained by
incubating targets cells in medium and 5% Triton X-100 (Sigma-Aldrich),
respectively. Specific release (%)= (mean c.p.m. (sample)–mean c.p.m. (min))/
(mean c.p.m. (max)−mean c.p.m. (min)), n= 3. Assay medium was RPMI-1640
(Sigma-Aldrich), supplemented with 10% FCS and 100 IU/ml penicillin and 100 μg/
ml streptomycin (Sigma-Aldrich).

CD107a degranulation assay. 1 × 105 NK cells were added to tumor cell
lines at an E/T ratio of 1 : 1 in 200 μl, spun down at 300 r.p.m. for 2 min and
incubated in the presence of FITC-conjugated anti-CD107a antibody or isotype
control antibody (BioLegend). After 30 min, 1 μg of GolgiStop (BD Biosciences) was
added for an additional period of 3.5 h. As a positive control for NK cell

degranulation, NK cells were incubated with 50 ng/ml PMA and 1 mM ionomycin
(Sigma-Aldrich). When indicated, NK cells were incubated with 10 μg/ml of anti-
NKG2D (1D11) or isotype control for 20 min before the addition to target cells. Cell
suspensions were washed, stained for CD45-Pacific blue, CD3-PE and CD56-PE
Cy7 (all from BioLegend) on ice in FACS buffer for 30 min, washed and briefly
incubated with a 1 : 40 dilution of 7-AAD (BioLegend). Cells were measured on a
FACS Canto II (BD Biosciences) and analyzed using FlowJo 9.3.2 software
(Treestar).

Analysis of patient data and statistical analysis. To test whether the
expression of miR-519a-3p, TRAIL-R2, CASP7 and CASP8 correlated with disease-
free or relapse-free survival, the data sets GSE19783 (patients, n= 101) and
GSE22220 (patients, n= 216) were downloaded from the NCBI GEO database
(GEO Accession GSE19783 and GSE22220) and the meta-analysis data set from
KM Plotter version 2016 (patients, n= 3554)78 were used for human primary breast
tumors. To test whether miR-519a-3p is differentially expressed in ER− and ER+
as well as wild-type and mutant TP53 data sets GSE19783 (patients, n= 101) and
GSE22220 (patients, n= 216) were used, respectively. Correlations and statistical
analyses were carried out using R packages ‘survival’ and ‘boxplot’ to generate
Kaplan–Meier curves and boxplots. KM Plotter was used as an online tool. Log-rank
and Student’s t-tests were performed. All P-values were calculated by means of a
two-sided t-test where P-values of o0.05 were considered as significant, unless
otherwise stated. Kaplan–Meier survival curves were carried out in GraphPad
software (GraphPad software Inc., La Jolla, CA, USA). Enriched pathways predicted
to be targeted by miR-519a-3p were identified using first the TargetScan (version
7.1) miRNA target prediction algorithm79 and then KEGG (Kyoto Encyclopedia of
Genes and Genomes) analysis within the functional enrichment tool DAVID
Bioinformatics Resources (version 6.7)80 (Supplementary Table S1).
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